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We present a novel fundamental phenomenon occurring when a polarized beam of light is observed

from a reference frame tilted with respect to the direction of propagation of the beam. This effect has a

purely geometric nature and amounts to a polarization-dependent shift or split of the beam intensity

distribution evaluated as the time-averaged flux of the Poynting vector across the plane of observation. We

demonstrate that such a shift is unavoidable whenever the beam possesses a nonzero transverse angular

momentum. This latter result has general validity and applies to arbitrary systems such as, e.g., electronic

and atomic beams.
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Introduction.—Optical angular momentum plays a key
role in many fundamental and applied researches [1]. A
suitably prepared beam of light may possess both a spin
and an orbital angular momentum which have been tra-
ditionally associated with circular polarization and the
spiraling phase front of the beam, respectively. However,
it is now well known that such a distinction is not fun-
damental [2]. In fact, spin-to-orbital angular momentum
conversion may occur in both inhomogeneous anisotropic
media [3] and in tightly focused beams [4,5]. Spin-orbit
coupling is also responsible for the so-called spin Hall
effect of light (SHEL) [6,7] that has been recently observed
in beam refraction [8] and in scattering from dielectric
spheres [9]. In practice, SHEL amounts to the split of a
linearly polarized beam of light into its two right-circularly
and left-circularly polarized components. A similar phe-
nomenon takes place when a light beam propagates along
a curved trajectory [10]. In this case the split is uniquely
determined by the trajectory geometry and can be ex-
plained in terms of geometrodynamics of the Berry phase
[11].

In this Letter we present a novel fundamental effect that
consists in a polarization-dependent split occurring when a
beam of light is observed on a plane which is not perpen-
dicular the propagation direction of the beam. Differently
from conventional SHEL and geometrodynamics of spin-
ning light, our split does not originate in a medium as a
result of light-matter interaction, but it occurs in vacuum
and is determined by the geometry of the beam-detector
system only.

The structure of this Letter is as follows. We first in-
troduce briefly the concepts of linear and angular momenta
of an arbitrary beam of light. Next, we let the beam
impinge on the plane z ¼ 0 representing the surface of a
detector, centered at the point O. Further, we assume that
the axis of the beam is tilted by an angle � with respect to
the z axis (see Fig. 1). We demonstrate that the spatial
distribution of the intensity of the beam Iðx; yÞ at the

detector surface, evaluated as the time-averaged flux of
the Poynting vector through the plane z ¼ 0, depends upon
the polarization of the beam. Specifically, if the beam is
circularly polarized with helicity � ¼ �1, the centroid of
Iðx; yÞ [12] will be displaced along the y axis with respect
to the detector center O by a distance � ¼ �=ð4�Þ� tan�
whose magnitude is of the order of the wavelength � of the
beam. Conversely, if the beam is linearly polarized (� ¼
0), then � ¼ 0 as the beam is symmetrically split into its
right-circularly and left-circularly polarized components.
We describe such a ‘‘geometric SHEL’’ as a consequence
of the tilting of the beam which is equivalent, in the
detector frame, to a spin-orbit interaction that generates
transverse components of the angular momentum of the
beam. Finally, we discuss our results and draw some
conclusions.
Linear and angular momentum of a light beam.—A

monochromatic electromagnetic beam in vacuo possesses

FIG. 1 (color online). (a) Geometry of the problem.
(b) Components of the angular momentum density j in the
beam and in the laboratory frame K0 and K, respectively. Note
that the beam cross section on the observation plane z ¼ 0 is
stretched along the x direction while the geometric SHEL shift
occurs along the y axis.
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a time-averaged linear (p) and an angular (j) momentum
density equal to

pðrÞ ¼ �0
2

Re½EðrÞ �B�ðrÞ�; (1a)

jðrÞ ¼ r� pðrÞ; (1b)

where Re½EðrÞe�i!t� and Re½BðrÞe�i!t� are the time-
harmonic electric and magnetic fields of the beam, respec-
tively [13], and r ¼ xx̂þ yŷ þ zẑ is the position vector.
The linear-momentum density p is equal to 1=c2 the
Poynting vector. At any plane z ¼ const, the intensity of
the beam IðrÞ ¼ c2pzðrÞ can be regarded as the spatial
distribution of the transverse coordinate vector r? ¼ x̂xþ
ŷy. The mean value hr?i ¼ x̂hxi þ ŷhyi with respect to the
distribution IðrÞ is

hr?i ¼
ZZ

r?pzðrÞdxdy
�ZZ

pzðrÞdxdy; (2)

and it determines the centroid (or barycenter) of the beam
at the plane z ¼ const, [14]. If with P and J we denote the
time-averaged linear and angular momentum of the beam
per unit length [15,16] obtained by integrating p and j over
the whole x-y plane at fixed z:

P ¼
ZZ

pðrÞdxdy; J ¼
ZZ

jðrÞdxdy; (3)

then the denominator of Eq. (2) is, by definition, equal to
Pz. From this fact and Eq. (1b), it immediately follows that

Jx ¼ hyiPz � zPy; (4a)

Jy ¼ zPx � hxiPz; (4b)

that, in the plane z ¼ 0, reduce to

Jx=Pz ¼ hyi; Jy=Pz ¼ �hxi: (5)

This remarkably simple result shows that the centroid of a
beam with a nonzero transverse angular momentum per
unit length J? ¼ x̂Jx þ ŷJy is displaced with respect to

the center of the plane of observation z ¼ 0, in a direction
orthogonal to J?, namely, hr?i � J?jz¼0 ¼ 0. Moreover,
Eq. (5) automatically furnishes a simple recipe to actually
measure the transverse angular momentum of the beam:
This can be achieved by measuring the position of its
centroid at z ¼ 0. With the current state-of-the-art metrol-
ogy, such measurement can be performed up to and beyond
the standard quantum limit [17–19]. It is worth noting that
Eqs. (4) and (5) are perfectly general and their validity is
not limited to electromagnetic fields, as they derive from
Eq. (1b) only [20].

Now, we will calculate the time-averaged linear and
angular momentum per unit length P and J of a mono-
chromatic beam of light of wavelength � ¼ 2�=k and
frequency ! ¼ kc propagating forward along the z axis
of a Cartesian reference frame. Let

E ðr; tÞ ¼ E0

ZZ
Eðp; qÞ expðik � r� i!tÞdpdq (6)

denote the time-harmonic electric field of the beam in the
angular spectrum representation [13], where k ¼ kðpx̂þ
qŷ þmẑÞ is the wave vector of the plane wave expðik � rÞ
withm ¼ ð1� p2 � q2Þ1=2, and E0 is the real amplitude of
the electric field. Here we neglect the contribution from
evanescent waves by assuming Eðp; qÞ � 0 outside the
homogenous-wave domain H : p2 þ q2 � 1. This condi-
tion is always satisfied by collimated beams. From Eqs. (1)
and (6), it follows that

P =P0 ¼
ZZ

k̂jEðp; qÞj2dpdq; (7)

and

J=P0 ¼ �
ZZ X3

l¼1

E�
l ð�ik� r?

k ÞEldpdq

� i�

2

ZZ �
E� � E þ ẑ

k̂

m
� ðE� � EÞ

�
dpdq; (8)

where � ¼ 1=k, kr?
k ¼ x̂@=@qþ ŷ@=@p, and both P and

J are expressed in units of linear momentum per unit
length P0 ¼ "0E

2
0�

2=c. Equation (7) shows that P=P0 is

just the mean value of the unit wave vector k̂ ¼ k=k with
respect to the energy-density distribution in momentum
space jEðp; qÞj2. The separation between the orbital and
the spin part of the total angular momentum per unit length
of the beam is displayed in the first and second rows of
Eq. (8), respectively.
An interesting consequence of Eqs. (7) and (8) is that

both P and J are independent from the z coordinate.
However, since Eqs. (4) have general validity they must
be satisfied for all values of z. Thus, by taking the deriva-
tive with respect to z of the right side of both Eqs. (4) and
equating to zero, we obtain dhr?i=dz ¼ P?=Pz ¼ const,
which simply shows that the centroid of the beam prop-
agates along the axis z obeying the laws of geometrical
optics.
Tilted beams.—Consider a circularly polarized beam of

light that propagates along the axis z0 tilted by an angle �
with respect to the reference axis z, as shown in Fig. 1. In
the Cartesian frame K0 attached to the beam, there is a unit
of spin angular momentum density directed along z0: jz0 /
� and j?0 ¼ 0, where � ¼ �1. However, in the Cartesian
frame K attached to the reference axis z, the angular
momentum density of the beam will have both a longitu-
dinal and a transverse component equal to jz / � cos� and
jx / �� sin�, respectively. As the cross section of the
beam when seen from K is augmented by a factor
1= cos�, we expect that the transverse angular momentum
per unit length of the tilted beam will go like J? /
x̂� tan�. As innocent as it seems, this conclusion has a
striking consequence. In fact, from Eq. (5) it immediately
follows that for our tilted beam hyijz¼0 / � tan�, which is
equal either to zero or to � tan� when the beam is either
linearly or circularly polarized. This means that the posi-
tion of the barycenter of a tilted beam changes according to
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the polarization of the beam itself, and that a linearly
polarized beam splits into its two left- and right-circularly
polarized components. It is worth noting that since the two
noncollinear axes z and z0 define uniquely a ‘‘plane of
incidence,’’ then the barycenter of the tilted beam is shifted
in a direction orthogonal to such plane of incidence. In this
respect, this effect has the flavor of the spin Hall effect of
light. However, here the split or shift has a purely geomet-
ric origin being generated by the existence, in the detector
frame, of a nonzero transverse angular momentum J?.
This is our main result that will be illustrated in the
remainder of this Letter by considering the representative
example of a tilted fundamental Gaussian beam.

Let us parametrize the axis of propagation ẑ0 of the beam
as ẑ0 ¼ x̂ sin�þ ẑ cos�, and switch to dimensionless co-
ordinates �0 ¼ x0=w0, �

0 ¼ y0=w0, 	
0 ¼ z0=L, where L ¼

kw2
0=2 and w0 are, respectively, the Rayleigh range and the

waist of the beam [13]. Then, let c ð�0; �0; 	 0Þ ¼
exp½�ð�02 þ �02Þ=ð1þ i	 0Þ�=ð1þ i	 0Þ denote the funda-
mental solution of the scalar paraxial wave equation in
the beam frame. The electric and magnetic vector fields are
expressible in terms of c as [21]

E / eið2	 0=�20Þ½x̂0
þ ŷ0�þ i�0ẑ
0ð
@�0 þ �@�0 Þ=2�c ;

(9)

B / eið2	 0=�20Þ½�x̂0�þ ŷ0
� i�0ẑ
0ð�@�0 � 
@�0 Þ=2�c ;

(10)

where û ¼ 
x̂0 þ �ŷ0 is a complex unit vector perpen-
dicular to z0 that determines the polarization of the beam,
and �0 ¼ 2=ðkw0Þ is the angular spread of the beam [22].
From Eq. (1a), it follows that

p 0ðr0Þ / jc j2
�
ẑ0 þ �0

�
x̂0 �

0	 0 � ��0

1þ 	 02
þ ŷ0

�0	 0 þ ��0

1þ 	 02

��
;

where � ¼ ið
�� � 
��Þ denotes the helicity of the
beam. Finally, we transform p0ðr0Þ to the detector frame
K via the map p0ðr0Þ ! p0ðrÞ ¼ Rð�Þp0ðR�1ð�ÞrÞ, where
Rð�Þ is the orthogonal matrix that maps ẑ into ẑ0: ẑ0 ¼
Rð�Þẑ. The resulting expression for pðrÞ is cumbersome
and it will not be reported here; the only quantity of interest
is [23]

pzð�;�;0Þ / e�2½ð�2cos2�þ�2Þ=ð1þ�20�
2cos2�Þ�

ð1þ�20�
2cos2�Þ2 ð1þ�0�� tan�Þ:

(11)

Finally, by substituting Eq. (11) into Eq. (2) and regaining
unscaled coordinates fx; y; zg, we obtain

hyijz¼0 ¼ �ð�=2Þ tan�þOð�0Þ2; (12)

in agreement with our previous qualitative argument.
As a test for Eq. (12), we have performed numerical

simulations by using the program POLFOCUS [24] that
simulates the intensity distribution in the focus of an
arbitrary numerical aperture lens using the Debye integral

[25], as long as the Fresnel number F [26] is F 	 1. A set
of 100� 100 input plane waves and 201� 1001 sampling
points on the detector plane z ¼ 0 were used in our simu-
lations. For well-collimated beams (�0 ¼ 0:01 and �0 ¼
0:001) and �=2� � * �=180 we found excellent agree-
ment between analytic and numerical expressions.
The physical origin of such a shift may also be qualita-

tively understood with the help of Fig. 2. Let ðx0; y0Þ ¼
ð0;
aÞ (a ¼ w0=2) be the coordinates of the maximum
and minimum of p0

x0 ðx0; y0; 0Þ, respectively. From Fig. 2

it may be deduced that p0
x0 ð0;
a; 0Þ ¼ �jp0

x0 ð0; a; 0Þj
and p0

z0 ð0; a; 0Þ ¼ p0
z0 ð0;�a; 0Þ > 0. Furthermore,

jp0
x0 ð0;�a; 0Þ ’ 2� 10�3jp0

z0 ðx0; a; 0Þj. Now, imagine tilt-

ing the beam by an angle �, and look at pzð0;�a; 0Þ.
Rotation mixes p0

x0 and p0
z0 to produce, for sufficiently

small angles �, pzð0;�a; 0Þ ’ p0
z0 ð0; a; 0Þ cos��

p0
x0 ð0;�a; 0Þ sin�. Thus, at y ¼ �a the small term

jp0
x0 ð0; a; 0Þj sin� will be subtracted from p0

z0 ðx0; a; 0Þ�
cos�, while at y ¼ a it will be added. This slight imbal-
ance of the beam intensity distribution c2pz causes the
small shift (12) in the y direction.
Discussion and conclusions.—We have presented a quite

counterintuitive and intriguing phenomenon: The position
of the barycenter of the intensity distribution of a tilted
beam of light varies with the polarization of the beam
itself. According to the classical theory of light, we have
identified the beam intensity with the flux of the Poynting
vector density s ¼ c2p of the beam across the detector
surface [27]. However, in practice, the actually measured
intensity depends on the effective response function of the
detector (see, e.g., Chaps. 12 and 14 of Ref. [13]). For
example, many detectors are sensitive to the electric field
energy density / jEðrÞj2 rather than sz. In this case from
Eq. (6) it follows that the y coordinate of the electric field
energy-density barycenter of the beam, evaluated at z ¼ 0,
is

hyiEn ¼ �
ZZ

iE� � @E
@q

dpdq

�ZZ
jEj2dpdq; (13)

where the superscript ‘‘En’’ marks the distinction with
respect to hyi defined by Eq. (2). This result should be

FIG. 2 (color online). (a) Plot of the x0 component of the rela-
tive Poynting vector density p0

x0 ðx0; y0; 0Þ=p0
z0 ð0; 0; 0Þ (�103).

(b) Plot of the z0 component of the relative Poynting vector
density p0

z0 ðx0; y0; 0Þ=p0
z0 ð0; 0; 0Þ. In both cases the polarization is

right-circular.
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compared with the x component of J given by Eq. (8):

Jx
Pz

¼ �
ZZ

imE� � @E
@q

dpdq

�ZZ
mjEj2dpdq: (14)

Comparison of Eq. (13) with Eq. (14) shows that, differ-

ently from Eq. (5), now hyi ¼ Jx=Pz � hyiEn unless m ¼
ð1� p2 � q2Þ1=2 � 1. The latter condition is satisfied by
well-collimated beams with a negligible electric field com-
ponent along the propagation axis z: Ez � 0. If this is not
the case we may have Jx � 0 and hyiEn ¼ 0, as for our
tilted beam when the incidence angle � is bigger than the
angular spread of the beam: � 	 �0. It is not difficult to
show that in this case hyi � 0, but hyiEn ¼ hyiEnx þ hyiEny þ
hyiEnz ¼ 0, since hyiEny ¼ 0 and hyiEnx ¼ �hyiEnz , where we

have defined

hyiEnl ¼ �
ZZ

iE�
l �

@El

@q
dpdq

�ZZ
jEj2dpdq; (15)

and l 2 fx; y; zg. However, by using a suitable polarizing
element that attenuates either Ex or Ez, one can still mea-
sure a nonzero shift since, in this case, the energy imbal-
ance causes hyiEnz � �hyiEnx and hyiEn � 0.

In conclusion, we have demonstrated the existence of a
novel optical spin-orbit effect which differs from conven-
tional SHEL in that light-matter interaction is not required.
The possible occurrence of a polarization-dependent shift
in vacuum was already predicted for strongly focused
beams with spherical wave fronts by Zel’dovich and co-
workers [28]. However, they failed to connect such a shift
with the occurrence of nonzero transverse angular momen-
tum, and they could measure it only via a scattering pro-
cess, namely, in the presence of light-matter interaction
[29]. We stress again that the validity of Eq. (4), one of the
main results of this Letter, is not limited to electromagnetic
fields, but extends to any field satisfying Eq. (1b). With the
current state-of-the-art metrology we are confident that,
although tiny, geometric SHEL is detectable. In fact, ex-
periments are in progress in our labs to confirm the exis-
tence of this intriguing phenomenon.
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