PRL 103, 097403 (2009)

PHYSICAL REVIEW LETTERS

week ending
28 AUGUST 2009

Nonlocal Optical Response of Metal Nanostructures with Arbitrary Shape
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We present an implementation of Maxwell’s equations that incorporates the spatially nonlocal response
of materials, an effect necessary to describe the optical properties of structures with features less than
10 nm. For the first time it is possible to investigate the nonlocal optical response of structures without
spherical or planar shape, and outside of the electrostatic limit. As an illustration, we calculate the optical
properties of Au nanowires and show that nonlocal effects are particularly important in structures with

apex features, even for arbitrarily large sizes.
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Interest in metallic structures with features on the order
of 10 nm or less has significantly increased as experimental
techniques for their fabrication have become possible [1].
Even if the features involve many hundreds of atoms or
more so that a continuum level of description is adequate,
their optical response can be difficult to correctly model
due to spatially nonlocal dielectric effects. In such cases,
the dielectric constant e(k, w) is a function of both the
wave vector k and angular frequency w (which are inde-
pendent). The k dependence has been neglected in pre-
vious classical studies of arbitrarily shaped nanostructures
(e.g., Ref. [2]). When not neglected, the constitutive rela-
tionship between the electric displacement field (D) and
the electric field (E) is

Dk, w) = gpe(k, w)E(k, w). (1)

The k dependence in e(k, w) leads to a spatially nonlocal
relationship between D and E when Eq. (1) is Fourier
transformed to the spatial domain [3]. This dependence
has long been known necessary to describe the optical
response of structures with features less than approxi-
mately 10 nm. For example, anomalous absorption is
experimentally observed in thin metal films [4,5], and
inclusion of k dependence provides an additional absorp-
tion mechanism through the excitation of longitudinal
plasmons [6] (called such because they are longitudinal
to k). Since early formulations of nonlocal electromag-
netics [3], treatments have been limited to planar surfaces
and structures with spherical symmetry [7,8] or aggregates
thereof [9-12], all within the electrostatic limit. However,
it has been predicted that nonlocal effects are significant
for structures with apex features [9], even for large sizes
where this limit is invalid.

In this Letter, we introduce an implementation of
Maxwell’s equations to simulate the dynamical response
of arbitrarily shaped structures that incorporates the spa-
tially nonlocal response of the material. This allows us to
describe the optical response of structures that are too large
to treat using quantum mechanics, yet too small for local
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continuum electrodynamics to be valid. As examples, we
calculate and analyze the optical response of Au nano-
wires, i.e., effectively 2D systems, of various shapes.
(These examples allow for straightforward interpretation
of our results; however, our general approach can be ap-
plied without loss of generality to 3D problems.) Our
approach provides a powerful, yet simple tool to investi-
gate the optical response of structures at the nanometer
length scale.

The dielectric function of a metal like Au is well de-
scribed in the classical continuum limit by three compo-
nents,

S(k: w) = € + 8inter(w) + Simra(k» a))’ (2)

where &, is the value as @ — 00, g;,..(®) is the contribu-
tion from d-band to conduction-band electronic transitions,
and &;,(K, ) is due to excitations of the conduction
electrons. [The notation in Eq. (2) highlights the k and
dependencies.] The latter component is responsible for the
plasmonic optical response of metals and nonlocal effects,
and can be described physically by the hydrodynamic
Drude model (which reduces to the local Drude expression
for electron motion if k — 0) [13],

2
)

o(w + iy) — Bk?’

simra(k’ w) == (3)
where wp, is the plasma frequency, y is the collision
frequency, and 8 = vy/2'/2 for a free electron gas in 2D
[14] with vy being the Fermi velocity. Inserting Eqgs. (1)
and (2) into the Maxwell-Ampere law in k space for a
time-harmonic field, —iwD = ik X H, where H is the
magnetic field, gives

— W€y € T Epprer(@) JE(K, w) + J (K, w) = ik X H(K, w),
4

where J is a nonlocal phasor polarization current associ-
ated with Eq. (3),
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o(w + iy) — B*k?

J(k, 0) = ive, Ek, ). (5

From Eq. (5), an equation of motion for J can be obtained
by inverse Fourier transforming (ik -V and —iw —
a/ar),

92 d _ 0
WJ(L 1)+ yaJ(r, t)— B>V3](x, 1) = soszEE(r, 7).
(6)

For our approach, we solve Eq. (6) self-consistently with
the inverse Fourier-transformed form of Eq. (4) and the
Maxwell-Faraday equation, 0B/dt = —V X E, where B
is the magnetic field density, over a grid-based domain
using finite differences to approximate the derivatives
[15]. Note that &y (@) in Eq. (2) is modeled as a
Lorentz oscillator, which leads to an additional polariza-
tion current. By not updating Eq. (6) outside of the non-
local materials, we implicitly impose the Pekar additional
boundary condition; i.e., the total nonlocal polarization
current vanishes outside of the structure [16]. The novelty
of this approach is that coupling Eq. (6) with the more
standard finite-difference equations [15] allows us to de-
scribe nonlocal effects for structures with arbitrary shape.

Other analytical forms for &(k, w) could be used within
our approach. In principle, quantum mechanical electronic
structure theory can be used to provide rigorous estimates
of e(k, o). See, for example, recent interesting work on
carbon nanotubes based on time-dependent density func-
tional theory [17]. It remains a challenge, however, to
reliably apply such methods to nanostructures involving
hundreds of atoms or more.

As an initial example of our formalism, we investigate
the optical response of Au cylindrical nanowires. For Au,
vp = 1.39 X 10° m/s, and we find that the hydrodynamic
Drude parameters wp = 8.812 eV and y = 0.0752 eV
provide the most accurate fit to empirically inferred bulk
dielectric data [18] over the range 1-1.8 eV where Eq. (2)
is determined mostly by &, (K, @). [Keeping these pa-
rameters constant, we then fit Eq. (2) over the entire optical
range, 1-6 eV, while including the Lorentz oscillator
model as described above.] The reduced mean free path
of the conduction electrons due to electron-interface scat-
tering is taken into consideration by using a modified
collision frequency [19], y' = y + AvpP/Sw, where P
is the perimeter of the structure, S is the surface area,
and A is the proportion of such collisions that are totally
inelastic, which for a metal-dielectric interface is approxi-
mately 0.1 [20].

We compare the optical response of nanowires with radii
of r = 2-8 nm in the local and nonlocal limits by calculat-
ing extinction cross sections [21] (i.e., the amount of power
absorbed or scattered relative to the incident light, which
for these small systems is dominated the former) by inte-
grating the normal component of the Poynting vector
around a surface enclosing the particle [22]; Fig. 1. The

0.3

—— 2-nmnonlocal

E

= 0.8 |

N

E 0.6 F ..... e

§ 4_. .o

» 04F

%‘ ~~~~~ 4-nm local
5 0.2 — 4-nmnonlocal

30

20F

""" 8-nmlocal

1.0 —— 8-nmnonlocal
0'0 L L 1 L
1.5 2.0 2.5 3.0 3.5 4.0

Energy (eV)

FIG. 1 (color online). Optical response of Au cylindrical nano-
wires with radii of 2 (top), 4 (middle), and 8 nm (bottom). Full
curve is nonlocal theory; broken curve is local theory.

appearance of anomalous absorption peaks relative to local
theory in Fig. 1 is similar to theoretical predictions [6] and
experimental observations [4,5] on thin metal films, where
they were shown to arise from the optical excitation of
longitudinal plasmons that cannot be described by local
electrodynamics. It is important to note that the hydro-
dynamic Drude model, Eq. (3), can have an effect at much
higher energies than the local Drude model because of the
interplay between w and K. In order to investigate the
nature of the anomalous absorption, we look at profiles
of |D|? at the peak energies, which include contributions
from both the incident E and material polarization.
Figure 2 shows |D|? for the r = 2 nm nanowire, where
discrete standing longitudinal plasmon modes are seen
with wavelengths A; = 2d/n, where d =2r and n =
I,3,5,... (i.e., odd numbers of half wavelengths that fit
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FIG. 2 (color online). Longitudinal plasmon modes inside a
r=2nm Au cylindrical nanowire at energies of (a) 1.60,
(b) 2.71, and (c) 3.69 eV. The polarization and direction of
incident light are indicated; the nanowire is outlined in white.
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into d). (Only the n =3, 5, and 7 modes are explicitly
shown.) This result is in sharp contrast to the local result of
a relatively uniform |D|?, but identical to previous pre-
dictions [6] and observations [4] on analogous thin metal
films. In addition to anomalous absorption, the non-
local effects blueshift the main plasmon resonance,
where, for example, at » = 4 nm there is a 0.014 eV blue-
shift. At optical energies, the discrete nature of these
modes is quickly lost with increasing r (as r— oo,
n— o0 and A; — 0), and nonlocal effects become less
important. This is seen in Fig. 1, where for » = 4 nm there
is only minor anomalous absorption and for » = 8 nm it is
hardly distinguishable. However, even at r = 8 nm there is
a broadening, reduction in intensity, and a blueshift of
0.0056 eV of the main plasmon resonance due to the
excitation of many closely spaced modes. While our ex-
plicit examples correspond to 2D nanowires, the » = 4 nm
results are remarkably similar to recent experimental ob-
servations on individual Au spherical nanoparticles with
similar radii [23]. For example, our results predict a
0.014 eV blueshift, while that observed is 0.011 eV. In
addition, our results predict anomalous absorption at en-
ergies below the main plasmon resonance with peaks near
1.7 and 2.1 eV, and the experimental results show similar
peaks near 1.8 and 1.9 eV (discrepancies that can be
attributed to the differences in dimensionalities).

While cylindrical nanowires are useful because their
simplicity allows us to easily understand the results, we
find that nonlocal effects are particularly strong in struc-
tures with apex features, a claim previously suggested [9].
We consider the optical response of Au triangular (equi-
lateral) nanowires, which have been thoroughly studied
within local electrodynamics because of the large |E|?
enhancements that occur at the apices [24]. The optical
responses of nanowires with side lengths of / = 5-40 nm
are shown in Fig. 3. Strikingly, for small enough / the main
plasmon resonance is hardly distinguishable from the non-
local anomalous absorption features. In addition, for all / a
significant damping and blueshift of the plasmon reso-
nance relative to the local result is observed. This effect
persists for / much larger than the analogous cylindrical
nanowire dimensions, where even at / = 40 nm there is a
0.1 eV blueshift.

Profiles of |D|? are again investigated at the anomalous
absorption energies; Fig. 4. Similar to the cylindrical nano-
wires, longitudinal plasmon modes are excited inside the
nanowires with analogous discrete wavelengths, A; , except
in this case d is the distance between the nanowire sides
along the longitudinal direction. However, comparison of
Figs. 2 and 4 reveals an interesting difference. In the
triangular structures, the longitudinal plasmon modes oc-
cur at discrete vertical positions, at each point where the
equation for A; is satisfied, which increases with n. The
ability of the triangular nanowires to strongly sustain these
resonances over the entire structure at multiple positions
(particularly near the apices where d can be arbitrarily
small) explains the strength of the calculated nonlocal
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FIG. 3 (color online). Optical response of Au triangular nano-
wires with side lengths of 5 (top), 10 (middle), and 40 nm
(bottom). Full curve is nonlocal theory; broken curve is local
theory.

effects compared to the cylindrical nanowires, where the
modes are only efficiently sustained along the central axis.
Generalizing this result to other apex structures suggests
that longitudinal plasmon modes can always be sustained
(at least near the apex), causing nonlocal effects to remain
important for arbitrarily large sizes.

As mentioned previously, much of the interest in apex
structures is due to the high surface |E|? enhancements, a
quantity important for many physical processes, such as
surface enhanced Raman scattering. However, in previous
studies of strongly interacting metallic spheres [9,11], non-
local effects were shown to strongly damp surface plas-
mons, greatly reducing |E|? enhancements. It is therefore
informative to compare |E|? at the bottom apex of the tri-
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FIG. 4 (color online). Longitudinal plasmon modes inside a
[ =5nm Au triangular nanowire at energies of (a) 1.88,
(b) 2.82, and (c) 3.71 eV. The polarization and direction of
incident light are indicated; the nanowire is outlined in white.
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FIG. 5 (color online). |E|*> enhancements at the apex of Au
triangular nanowires. Symbols denote the calculated points, and
curves are polynomial fits to the data. The full curve with open
circles represents the nonlocal theory; the broken curve with
open squares represents the local theory.

angular nanowires (where for the incident light considered
this is maximized) in the local and nonlocal limits. Figure 5
shows |E|?> enhancements at the plasmon resonances (ob-
tained from the extinction spectra) for / values up to 80 nm.
For the entire [ range studied, local electrodynamics pre-
dicts enhancements greater than twice the nonlocal result,
a significant difference. Furthermore, as suggested above,
there seems to be no convergence of the nonlocal to the
local result. Even though there appears to be no conver-
gence of the near field properties (e.g., |E|?), relative
convergence of those in the far field does occur; Fig. 3.
In conclusion, we presented a simple implementation of
Maxwell’s equations that, for the first time, can model the
spatially nonlocal dielectric response of arbitrarily shaped
structures. Our implementation is based on a derived equa-
tion of motion for the hydrodynamic Drude model, which
is solved self-consistently with Maxwell’s equations using
a finite-difference approach. As an example, we calculated
the optical response of Au nanowires and found strong
anomalous absorption, which in some cases completely
overshadowed the main plasmon resonance predicted by
local electrodynamics. For structures with apex features,
these effects were seen to be particularly important, where
at arbitrarily large dimensions nonlocal effects signifi-
cantly affected the optical spectra and surface |E|* en-
hancements. These results clearly demonstrate the impor-
tance of including such effects when describing metal-light
interactions at the nanometer length scale, especially now
that experimental investigation at this scale is becoming
possible. In the future, we plan to study more complex
systems (including 3D structures) with our approach,
which will allow for more direct comparison with experi-
ments. We believe that our implementation will be impor-

tant for many future studies, including a reconsideration of
previous work based on local electrodynamics, and provid-
ing a more quantitative understanding of the optical re-
sponse of structures at the nanometer length scale.
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