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We propose a new framework for first-principles calculations of heavy-fermion materials. These are

described in terms of the Kondo lattice Hamiltonian with the parameters extracted from a realistic density

functional based calculation which is then solved using continuous-time quantum Monte Carlo method

and dynamical mean field theory. As an example, we show our results for the Néel temperatures of

cerium-122 compounds (CeX2Si2 with X ¼ Ru, Rh, Pd, Cu, Ag, and Au) where the general trend around

the magnetic quantum critical point is successfully reproduced. Our results are organized on a universal

Doniach phase diagram in a semiquantitative way.
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A first-principles description of heavy-fermion materials
has been a challenging problem for a long time. The
difficulty arises from the dual nature of the electrons
between localization and itinerancy due to the large
Coulomb repulsion energy U at each site of the lattice.
Here the relatively well-localized f electrons interact with
the itinerant s, p, d electrons that form the conduction
band. The heavy-fermion systems are generally described
as the Anderson impurity model in the dilute limit [1] or
the Anderson lattice model (ALM) in the dense limit, and
the first-principles description of them has been done by
several authors [2–5]. With the development of dynamical
mean field theory (DMFT) [6] and novel continuous-time
quantum Monte Carlo (CT-QMC) solvers for the impurity
problem [7–9], the ALM description has become quite
successful except for a very low temperature range. The
numerically exact treatment of the Anderson impurity
problem is still very expensive if the temperature range
of Oð1Þ K is to be reached. Thus, the first-principles de-
scription of strongly correlated materials around the quan-
tum critical point (QCP) [10], which has recently been
attracting a lot of research interest is yet to be solved.

Here we attack the problem using the Kondo lattice
model (KLM) trying to focus on the low-energy physics
of the ALM. We show how this new approach works for a
archetypical family of so-called cerium 122 compounds,
CeX2Si2 (X ¼ Ru, Rh, Pd, Cu, Ag, and Au), which has
been one of the most extensively studied strongly corre-
lated materials since the discovery of heavy-fermion su-
perconductor CeCu2Si2 [11]. Strictly speaking, we deal
with the Coqblin-Schrieffer model [12] with full 14-fold
degenerate f-shell but effectively the degeneracy is low-
ered due to the spin-orbit and crystal-field splittings. With
the localized Kondo-impurity picture we can save the
amount of the degrees of freedom in our model by elimi-
nating charge fluctuations, and we can reach a much lower
temperature range as compared to the ALM simulations.
The conduction band in the model is given by the hybrid-

ization function between the localized 4f orbitals and the
s, p, d conduction bands calculated by the first-principles
electronic structure calculation based on the local-density
approximation (LDA) with Hubbard I [13] type of the self-
energy for the f electrons. Then the Kondo coupling is
defined via the Schrieffer-Wolff transformation [14], and
the KLM is solved with the new efficient CT-QMC Kondo-
impurity solver [15] combined with DMFT.
Now we define the realistic KLM Hamiltonian for a

given cerium compound. The general Coqblin-Schrieffer
Hamiltonian is the following.

H ¼ X
k

�kc
y
k ck þ JK

X
i��0

fyi�fi�0cy
i�0ci�

þX
i�

��
splittingf

y
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Here �k is the conduction band, JK is the Kondo coupling,
��

splitting is the crystal and spin-orbital field, ck and fi� are

the annihilation operators for the conduction and 4f elec-
trons, respectively, with the orbital� on the lattice site i. To
solve this Hamiltonian we first need to define JK and the
conduction electron Green function. For this we perform
the first principle DFT calculation within the local-density
approximation for s, p, d electrons plus the Hubbard I
approximation for the f electrons based on the full-
potential linearized muffin-tin orbitals (LMTO) method
[13] and calculate the hybridization function [2]=��ð�Þ ¼
�
P

kjV�kj2�ð�� �kÞ ’ �jV�j2�ð�Þ where V�k is the hy-
bridization matrix element and �ð�Þ is the density of states
of the conduction electrons at energy � which we measure
from the Fermi energy. We use experimental lattice pa-
rameters for all materials that we study.

The calculated Tr=�ð�Þ=ð�NFÞ � ½1=ð�NFÞ��PNF

�¼1 =��ð�Þ is shown in Fig. 1 for several representative
CeX2Si2 materials with X ¼ Ru, Rh, Pd, and Ag. Here
NF ¼ 14 is the total number of degeneracy and the trace of
=� is taken over all of NF states. We note that =� shows
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strong frequency dependence therefore in order to define
JK an averaging over some frequency intervals needs to be
performed.

The Kondo coupling JK is defined by the Schrieffer-
Wolff transformation [14,16] as follows:

JK ¼ 1

�

Z Dcutoff

�Dcutoff

d�
Tr=�ð�Þ

NF

�
1

j�fj þ
1

ð�f þUeffÞ
�
: (2)

Here �f is the location of the energy level of 4f orbital, and

Ueff ¼ U� JHund is the effective on-site Coulomb repul-
sion taking into account an effective Hund coupling JHund
that works in the virtual f2 state. We set �f ¼ �2:5 ½eV�
and U ¼ 5 ½eV� which is a typical value for cerium com-
pounds. The Hund coupling JHund is explored around a
realistic value 1 eV as is explained below. In the present
formulation, Ueff incorporates all of the possible multiplet
effects in the virtual f2 states and some systematic error

comes in from the setting of this value, but it is small
enough to see the general trend between the materials in
the realistic Doniach phase diagram that is obtained in
Fig. 4 in the end. Here we have a band cutoff Dcutoff set
to be 5 [eV] which is large enough to make a universal
description of the low-energy physics [17].
The portion of the conduction electron Green function

G�ð�Þ which has nonzero hybridization with the
f electrons is also proportional to ��ð�Þ. We define the
normalized and Hilbert-transformed G�ði!Þ as follows:

G�ði!Þ ¼
Z Dcutoff

�Dcutoff

d�
=��ð�Þ
i!� �

=
Z Dcutoff

�Dcutoff

d�=��ð�Þ: (3)

Equations (2) and (3) provide necessary inputs which are
plugged into the CT-QMC impurity solver and solved with
DMFT self-consistency loop. The details of the CT-QMC
algorithm for the Coqblin-Schrieffer model are given in
[15]. These definitions for the realistic model are designed
in such a way that it becomes exact in the limit of constant
hybridization with the relevant quantity NFJK�ð0Þ that
determines the behavior of the KLM [15].
The LDA results for NFJK�ð0Þ for the target materials

are given in Table I. The level splittings �� appeared in 1
are implemented as the difference of the positions of �f ’s

which are used in the update probability as is described in
Ref. [15]. These level splittings are taken from the litera-
ture and summarized in Table I. We checked that our
results for the Néel temperatures are robust against small
changes of factor of Oð1Þ on the level splittings. These ��

reduce the effective degeneracy close toNF ¼ 2 [27]. Thus
we call our model ‘‘realistic Kondo’’ lattice instead of the
Coqblin-Schrieffer lattice even though we are actually
doing the multiorbital model.
We apply the above framework for the KLM descrip-

tion of CeX2Si2 with X ¼ Ru, Rh, Pd, Cu, Au, Ag.
We do the following analyses with several settings of

TABLE I. Inputs (given by LDA and experiments in the literature) and outputs for each material. �spin-orbit is spin-orbit splitting
between j ¼ 5=2 and j ¼ 7=2 states. Crystal-field splitting of j ¼ 5=2 state produces three doublets with energy E0 <E1 <E2 with

E1 � E0 ¼ �1
splitting and E2 � E0 ¼ �2

splitting. JHund � 1 eV is used. The �1
splitting, �

2
splitting, �

spin-orbit
splitting are given in meV units and TN in

K. Similar values for the level splittings were used in a recent work [18].

Material NFJK�ð0Þ �1
splitting �2

splitting �
spin-orbit
splitting TN(literature) TN (our results)

CeRu2Si2 0.144 19a,b 34a,b �300 (paramagnetic)h 0

CeRh2Si2 0.180 26.7c 58.7c �300 36–39h �70
CePd2Si2 0.140 19d,e 24d,e 230d 10h �50
CeCu2Si2 0.146 32b,f,g 37b,f,g �300 (paramagnetic)h �70
CeAg2Si2 0.110 8.8e 18.0e �300 8–10h �30
CeAu2Si2 0.125 16.5e 20.9e �300 8–10h �50

aRef. [19].
bRef. [20].
cRef. [21].
dRef. [22].
eRef. [23].
fRef. [24].
gRef. [25].
hRef. [26].
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FIG. 1 (color online). The hybridization function Tr=�ð�Þ=14
between the conduction band and the 4f electrons calculated by
LDAþ Hubbard I for CeX2Si2 with X ¼ Ru, Rh, Pd, and Ag.
The origin of the energy is set to be the Fermi level.
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Ueff ¼ U� JHund for 0 � JHund & 1 eV for each of the
material. For a given material and given parameter set,
we determine the Néel temperature by looking at the
temperature dependence of staggered susceptibility and
locating at which temperature it diverges. Here we follow
the formalism of DMFT for the localized f electron sys-
tems as given in [29] and use the same method as was
utilized for model calculations in [28]. Regarding the
realistic input of the Green’s function as is depicted in
Fig. 1, we make an approximation in the calculation of
the staggered magnetic susceptibility for the 4f electrons
by decoupling the two-particle density of states
�ð�1; �2Þ ¼ �ð�1 þ �2Þ�ð�1Þ as if there is a nesting prop-
erty which becomes exact when the 4f electrons are on a
hypercubic lattice. Thus the tendency to the antiferromag-
netic order would be overestimated in addition to having
the infinite-dimensional nature in the DMFT solution to the
lattice problem. The data specific to CeRh2Si2 with which
we determine the Néel temperatures for several settings of
JHund are shown in Fig. 2. In this way for each of the
material we look at the magnetic phase transitions for
several JK’s by varying corresponding JHund’s.

As was first discussed by Doniach [30,31] and subse-
quently by many authors, Kondo lattices have two repre-
sentative energy scales, namely, the magnetic ordering en-
ergy that is proportional to ðJK=NFÞ2�ð0Þ and the Kondo
screening energy which behaves like expð� 1=NFJK�ð0ÞÞ.
For small JK’s the former wins but as JK becomes larger
the exponential growth of the latter dominates at some
point. Thus a given system can realize in either magneti-
cally ordered phase or nonmagnetic Kondo-screened
phase. Between these two phases at zero temperature there
is thought to be a QCP. We explore this Doniach phase
diagram for each material and find the material-specific
QCP. We take the data with the setting JHund ¼ 0:94 eV as
our realistic result for each material as this strength of the
Hund coupling is close to the realistic value and also gives
reasonable trend over all materials in the family. Thus

obtained Doniach phase diagrams for all of the materials
are shown in Fig. 3.
Now we can plot all of the six materials CeX2Si2 (X ¼

Ru, Rh, Pd, Cu, Ag, Au) on the universal Doniach phase
diagram in the same spirit as was done by Endstra et al. in
1993 [26] but with a different horizontal axis. In the
material-specific Doniach phase diagrams in Fig. 3, we
see that the locations of QCP’s on the NFJK�ð0Þ are not
actually universal [32]. So we measure the distance be-
tween the QCP and the material’s realistic location on the
horizontal axis, NFJK�ð0Þ � NFJK�ð0ÞjQCP, and plot the

Néel temperatures with respect to the value of the distance
to QCP defined as t � ½NFJK�ð0Þ � NFJK�ð0ÞjQCP�=
NFJK�ð0ÞjQCP. The result is shown in Fig. 4. We expect a

systematic error bar in the estimation of the value on the
horizontal axis especially around the QCP but these pos-
sible systematic errors are small enough to discern the
locations of CeX2Si2 (X ¼ Ag, Au) and CeRh2Si2. The
antiferromagnet CeRh2Si2 and the paramagnet CeCu2Si2
are mixed up within the present level of resolution which is
manifested by the result that finite Néel temperature is
plotted for CeCu2Si2. However, this is actually caused by
the proximity of this material to its QCP as can be seen
from Fig. 3. So our numerical result is consistent with the
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FIG. 2 (color online). Determination of Néel temperatures for
several settings of the Hund coupling JHund. We see that the Néel
temperature disappears at the point where JHund takes the value
between 0.96 and 0.98 eV.
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FIG. 3 (color online). Material-specific Doniach phase dia-
grams for CeX2Si2 with (a) X ¼ Ru, Cu, and Rh and with
(b) X ¼ Pd, Au, and Ag. The realistic results with JHund ¼
0:94 eV are marked with the larger plot symbols.
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experimental result that CeCu2Si2 is a superconductor at
ambient pressure and is thought to be close to the QCP.

We note that the valence fluctuations which we ignored
in our simulation could be important in the realization of
the nonmagnetic ground state. Indeed it is known that there
are some valence fluctuations in CeCu2Si2 [33] and
CeRu2Si2 [34]. This might make the possible systematic
error relatively larger on the right-hand side of our phase
diagram [35,36]. Nevertheless, at the present level of de-
scription we believe that the realistic KLM works because
the number of 4f electrons in cerium ion is still very close
to 1 [33,34]. At least for the impurity problem the con-
vergence to the Kondo-impurity picture in large
j�fj=ð�ð0ÞV2Þ limit of the Anderson model was discussed

exactly [37]. Careful comparison between the Anderson
lattice and the Kondo lattice regarding the valence fluctua-
tion issue is interesting, especially for CeCu2Si2, and fur-
ther work is ongoing in this direction.
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