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We show that in weakly disordered Luttinger liquids close to a commensurate filling the ratio of thermal

conductivity � and electrical conductivity � can deviate strongly from the Wiedemann-Franz law valid for

Fermi liquids scattering from impurities. In the regime where the umklapp scattering rate �U is much

larger than the impurity scattering rate �imp, the Lorenz number L ¼ �=ð�TÞ rapidly changes from very

large values L� �U=�imp � 1 at the commensurate point to very small values L� �imp=�U � 1 for a

slightly doped system. This surprising behavior is a consequence of approximate symmetries existing even

in the presence of strong umklapp scattering.
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In a Fermi liquid, a quasiparticle carries charge e and has
an energy of the order of kBT. These basic properties are
reflected in the Wiedemann-Franz (WF) law [1,2]: The
ratio of the thermal conductivity divided by the tempera-
ture T and the electrical conductivity, the so-called Lorenz
number

L ¼ �

�T
¼ �2k2B

3e2
¼ L0; (1)

takes a universal value L0. TheWF lawL ¼ L0 is valid and
routinely observed in the low-T regime of Fermi liquids
where impurity scattering dominates.

Deviations from the WF law, L=L0 � 1, in the low-T
regime, which have, e.g., been reported for high-
temperature superconductors [3] or close to quantum-
critical points [4], are regarded as evidence that the low-
energy excitations cannot be viewed as electronic quasi-
particles. But even if a description of thermal and electric
transport in terms of Fermi liquid quasiparticles is possible,
the WF law will not be valid if inelastic scattering pro-
cesses dominate which in general relax heat and charge
currents differently. Typically, these corrections to L=L0

are of the order of 1 and not very large [5,6].
Large violations of theWF law usually reflect a dramatic

change of the excitation spectrum associated with the
opening of a gap. For example, in a Mott insulator � is
exponentially small while heat can still efficiently be trans-
ported by spin fluctuations. The opposite case occurs in a
superconductor where � ¼ 1 while � remains finite at
finite T due to thermally excited quasiparticles.

In this Letter, we show that small changes in the doping
can trigger enormous changes of the Lorenz number L in
Luttinger liquids in situations where the umklapp scatter-
ing rate �U is larger than the impurity scattering rate
�imp � �U; see Fig. 1. This happens even in regimes

where umklapp scattering does not open a charge gap.
This peculiar behavior can be traced back to the presence

of approximate symmetries of the clean system which
affect charge and heat current in a completely different
way. This has to be contrasted with a situation where
impurity scattering provides the dominant relaxation
mechanism for both heat and charge currents. For this
case Li and Orignac [5] have shown that only violations
of order 1 of the WF law exist.
When investigating the thermal or electrical conductiv-

ity of low-dimensional systems, it is important to account
for the role of symmetries and conservation laws even if
these are only approximate. For example, in integrable
one-dimensional models, conductivities are usually infinite
at finite T [7] as the conservation laws protect the currents
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FIG. 1 (color online). Lorenz number L=L0 (1) as a function
of doping �� away from 1=3 filling [� ¼ 3vcG��=ð�TÞ], us-
ing the variables of Eq. (10) (for Kc ¼ 0:6, Ks ¼ 0:8, vs=vc ¼
0:5). If disorder dominates ~D * 1, L=L0 is of order 1 and dop-
ing independent. For a clean system with ~D � 1, the WF
law is strongly violated. A pronounced peak of height 1= ~D

and width
ffiffiffiffi
~D

p
at the commensurate filling is followed by a

pronounced minimum. Inset: � dependence of �0=½TL0�0ðTÞ�,
�=½TL0�0ðTÞ�, and �=�0ðTÞ for ~D ¼ 0:001, �0ðTÞ ¼
ðv2

ca
2nc�3=g2Þðvc=aTÞ� with � ¼ Ksn

2
s þ Kcn

2
c � 3.
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from decaying. Small perturbations render the conductivity
finite but still large [8]. Below, we demonstrate the impli-
cations on the thermoelectric effects.

We consider a weakly disordered one-dimensional (1D)
metal described by a single band with the filling � ¼ �0 þ
�� and the electron density 2�, where �0 ¼ mc=nc with
integers mc and nc is a commensurate filling. The low-
energy Hamiltonian is given [9] by

H ¼ HLL þHU þHimp;

HLL ¼
Z dx

2�

X
i¼c;s

vi

�
Kið@x�iÞ2 þ 1

Ki

ð@x�iÞ2
�
;

HU ¼ g

ð2�aÞnc
Z

dxei
ffiffi
2

p ½nc�cðxÞþns�sðxÞ�e�i�kx þ H:c:;

Himp ¼ 1

�a

Z
dx	ðxÞfei

ffiffi
2

p
�cðxÞ cos½ ffiffiffi

2
p

�sðxÞ� þ H:c:g; (2)

where HLL is the usual Luttinger liquid Hamiltonian
expressed in terms of spin (s) and charge (c) densities
@x�c;s and their conjugate variable @x�c;s with

½�c;sðxÞ; @x0�c;sðx0Þ� ¼ i��ðx� x0Þ. HU is the dominant

umklapp scattering process where �k ¼ 2nckF �
mcG ¼ ncG�� (with G ¼ 2�

a ) is proportional to the de-

viation from commensurate filling and ns ¼ 0; 1 for even
and odd nc, respectively. The term Himp with a Gaussian

correlated impurity potential h	ðxÞ	ðx0Þi ¼ D�ðx� x0Þ
describes a weak backscattering due to disorder.

Even in the presence of umklapp scattering, an approxi-
mate symmetry closely related to momentum conservation
exists [10]. The so-called pseudomomentum

~P ¼ Pt �mcG

2nc
ðNR � NLÞ ¼ Pþ �k

2nc
ðNR � NLÞ (3)

[where NRðLÞ is the number of right (left) movers] com-

mutes with HLL þHU (even if effects like band curvature
or a weak three-dimensional coupling are added [10,11]).
Here Pt is the crystal momentum, and P ¼ Pt � kFðNR �
NLÞ measures the momentum relative to the two Fermi
points.

Because of the pseudomomentum conservation, even a
strong umklapp scattering may not be sufficient to relax the
heat and charge currents. To capture this, one needs a
transport theory which properly accounts for the role of
conservation laws and the associated vertex corrections.
For the nonlinear interaction describing umklapp scatter-
ing in Luttinger liquids, the memory matrix approach to
transport [12] is to our knowledge the only available
method, especially as there are presently no numerical
methods to calculate conductivities at finite but low T.
As discussed in Ref. [13], this method allows one to
calculate lower bounds to � and � in the perturbative re-
gime and gives precise results as long as the relevant slow
modes are included in the calculation. It was shown to
capture prominent features of observable transport phe-
nomena, e.g., magnetothermal transport in spin chains
[14].

The first step to set up the memory matrix formalism is
to list a number of relevant operators Ji which in our case
includes the electrical current J1 ¼ Jc ¼ vcKcðNR � NLÞ,
the heat current J2 ¼ Jh ¼ �P

i¼c;s

R
v2
i @x�i@x�i, and the

momentum operator J3 ¼ P ¼ �P
i¼c;s

R
@x�i@x�i. To

leading order in HU and Himp, the matrix of conductivities

is then obtained from

�̂ ¼ 
̂M̂�1
̂; Mij ¼ lim
!!0

Imh@tJi; @tJji!
!

; (4)

with the 3� 3 memory matrix M̂ ¼ M̂U þ M̂imp. As the

time derivatives @tJi ¼ i½H; Ji� are already linear in the
weak perturbations gU and 	, the correlators are evaluated
with respect toHLL. 
̂ is the matrix of static susceptibilities

ij ¼ hJi; Jji!¼0 with


̂ � �T2

3

6vcKc

�2T2 0 0

0 vc þ vs
1
vc
þ 1

vs

0 1
vc
þ 1

vs

1
v3
c
þ 1

v3
s

0
BB@

1
CCA: (5)

The umklapp contribution to Eq. (4) is given by

M̂U

cU�U

�
2v2

cn
2
cK

2
cF00

�T2
vcncKcF3

�k
�vcncKc�kF00

�T2

vcncKcF3

�k �v2
cF4=2 F3=2

�vcncKc�kF00

�T2 F3=2
�k2F00

2�T2

0
BB@

1
CCA; (6)

where cU ¼ ð�ÞKcn2cþKsn
2
s�1

ð2�Þ2nc�1 ðvc

vs
ÞKsn

2
s and �U ¼ g2

a2nc�1 �
ðaTvc

ÞKcn
2
cþKsn

2
s�1. Fmn are the dimensionless functions

Fmn ¼ 2
Z

dxdt tei�x½@mx fcðx; tÞ�½@nxfsðx; tÞ�;
fcðx; tÞ ¼ ½sinhðxþ itÞ sinhðx� itÞ��ðKcn

2
c=2Þ;

fsðx; tÞ ¼ ½sinhðxvc=vs þ itÞ sinhðxvc=vs � itÞ��ðKsn
2
s=2Þ;

F3 ¼ �fF20 þ ðvs=vcÞ2F02 þ ½1þ ðvs=vcÞ2�F11g;
F4 ¼ �½F20 þ ðvs=vcÞ4F02 þ 2ðvs=vcÞ2F11�; (7)

which depend on doping and T via � ¼ vc�k=ð�TÞ. Note
that M̂U has a vanishing eigenvalue reflecting that
½HU; ~P� ¼ 0. The disorder contribution is given by

M̂imp

cimp�imp

�
ð4Kcvc

2�T Þ2 0 0

0 vcvs
~K

K2
t

1þKt

0
K2
t

1þKt

ðKc
v2c
þKs

v2s
ÞKt

1þKt

0
BBBB@

1
CCCCA; (8)

where cimp ¼ ð2�ÞKt�1

2 ðvc

vs
ÞKs �

2ðKt=2Þ
�ðKtÞ , �imp ¼ D

a2
ðaTvc

ÞKt , Kt ¼
Kc þ Ks, and ~K ¼ ðKcv

2
cþKsv

2
s ÞKt

vcvsð1þKtÞ . Finally, �, �, and L of

Eq. (1) are obtained from

� ¼ �̂11; � ¼ �0 � TS2� ¼ 1

T

�
�̂22 � �̂2

21

�̂11

�
: (9)

It should be noted that � is measured experimentally in a
setup where the charge current vanishes, resulting in the
thermoelectric counter terms of Eq. (9). S ¼ �̂21=ðT�̂11Þ is
the thermopower.
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For given Luttinger liquid parameters vc;s and Kc;s, the

Lorenz number depends only on two dimensionless quan-
tities, describing the ratio of renormalized disorder
strength and umklapp scattering and the doping:

~D ¼ �imp

�U

¼ Da2nc�3

g2ðaT=vcÞ�
; � ¼ vc�k

�T
; (10)

with � ¼ ðn2c � 1ÞKc þ ðn2s � 1ÞKs � 1. Figure 1 shows
the striking doping dependence of �, �, and the Lorenz
number L=L0 for the filling 1=3 (nc ¼ 3, ns ¼ 1). For
large effective disorder ~D * 1, L=L0 is of order 1 and
there is essentially no doping dependence. For ~D � 1,
one obtains instead a huge and sharp peak of height 1= ~D

and width
ffiffiffiffi
~D

p
followed by a wider dip located at �� 1,

where the minimum scales as ~D.
This behavior can be understood by investigating the

relation of the currents Jh and Jc to the approximately
conserved ~P [Eq. (3)]. From the continuity equation, one
can show [11] that the cross susceptibility of Jc and ~P is
(up to exponentially small corrections) given by the doping
�� away from the commensurable point


Jc ~P
¼ 2�� � �k
̂11

2ncKcvc

þ 
̂31 (11)

while 
Jh ~P
� T2 > 0. 
Ji ~P

measures the ‘‘overlap’’ of the

current and the conserved operator. A vanishing 
 implies
that the operators are orthogonal to each other; i.e., the
current is not protected by the conservation law and can
decay rapidly by umklapp processes. Therefore, at the
commensurate point where 
Jc ~P

¼ 0, Jc can decay by

umklapp processes, while Jh is protected. Indeed, as shown
in the inset in Fig. 1, at � ¼ 0 one obtains�� 1=�U small,
but �� 1=�imp, resulting in L=L0 � 1= ~D in the clean limit
~D � 1.
For finite doping, 
Jc ~P

¼ �� > 0 and therefore ��
ð��Þ2=�imp grows rapidly until it becomes of the same

order as the heat conductivity in the absence of electro-
thermal correction �0=T. In this regime, the leading con-
tribution to �=T, however, of order 1=�imp is exactly

canceled by the thermoelectric counter terms in Eq. (9).
The physical origin of this cancellation is that � is mea-
sured under the boundary condition Jc ¼ 0. As the com-
ponent of Jc perpendicular to ~P decays rapidly by
umklapp, Jc and ~P become almost parallel for small ~D
implying that effectively the heat conductivity measure-
ment is performed under the boundary condition of vanish-
ing ~P. Therefore � becomes of order 1=�U, and L=L0 � ~D.
For neutral liquids a related effect is well known: While
mass currents do not decay due to momentum conserva-
tion, the heat conductivity measured under the boundary
condition of vanishing mass currents remains finite (this
situation is more transparent as momentum and mass cur-
rent are proportional to each other, while this is not the case
for Jc and ~P). Finally, for � � 1 the umklapp scattering is

exponentially suppressed, both � and �=T are of order
1=�imp, and L=L0 � 1 [5].

In Fig. 2, the T dependence of the WF ratio, �, and � are
shown using the appropriate dimensionless variables

~�¼ �

~D1=�
; ~T ¼ T

TD

; TD � vc

a

�
Da2nc�3

g2

�
1=�

: (12)

Upon lowering T, the disorder close to 1=3 filling becomes
more and more important, ~D grows, and L=L0 becomes of
order 1 for low T. As explained above, for vanishing

doping ~� ¼ 0, � is much smaller than �=T as long as
umklapp scattering dominates. For finite doping, umklapp
scattering is exponentially suppressed at low T (see inset in
Fig. 2). However, when it sets in ( ~T > 1), it leads to a larger
suppression of �=T compared to � due to the partial
cancellations from thermoelectric corrections.
While the theoretical analysis of the problem described

above is most transparent for the filling close to 1=3, it is
useful to study a case with direct experimental realizations.
One possible candidate is the quarter-filled quasi-1D
Bechgaard salt ðTMTSFÞ2PF6 [15], where the anisotropy
of the kinetic energy (ta:tb:tc ¼ 250:20:1 meV) allows a
Luttinger liquid description for T * 100 K. Two extra
complications arise at quarter filling: First, in the absence
of disorder the effective low-energy model HLL þHU

becomes the integrable sine-Gordon model, which for-
mally has an infinite number of conservation laws on top
of the pseudomomentum. For an analysis of transport, one
has to identify the leading corrections which break inte-
grability (see Ref. [8]). Second, for HLL þHU there is a
strict separation of charge and spin degrees of freedom, the
latter being not affected by umklapp scattering. We there-
fore have to take band curvature [16] into account, which
couples spin and charge and breaks integrability:
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FIG. 2 (color online). T dependence of the Lorenz number for
various dopings close to 1=3 filling using (12) (parameters as in
Fig. 1). At low T, disorder always dominates resulting in a
T-independent L=L0 of order 1. At the commensurate point,
L=L0 � 1= ~D. Inset: �0ðTÞ=½TL0 ~�0ðDÞ�, �ðTÞ=½TL0 ~�0ðDÞ�, and
�ðTÞ=~�0ðDÞ for ~� ¼ 0 (red line) and ~� ¼ 10 (blue line). Here
~�0ðDÞ ¼ ½Da2nc�3=g2��v2

c=D with � ¼ ð2� Kc � KsÞ=�.
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HBC ¼ � 1

6
ffiffiffi
2

p
m

Z
½@x�3

c þ 6@x�s@x�s@x�c

þ 3@x�cð@x�2
s þ @x�

2
s þ @x�

2
cÞ� � �

Z
@x�c:

(13)

Here we have added an extra T-dependent chemical po-

tential � ¼ T2�2

12m ½ 1
v2
c
ðKc þ K�1

c Þ þ 1
v2
s
ðKs þ K�1

s Þ� to ac-

count for the T-independent particle density 2� in a 3D
crystal. To leading order in 1=m, corrections to 
̂ arise only

for 
12 ¼ 
21 � �T2

3m ð1=vc þ 1=vsÞ and 
13 ¼ 
31 �
�T2

3m ð1=v3
c þ 1=v3

sÞ. As both NR � NL and P commute

with HBC, only M̂22 gets an extra contribution: M̂BC
22 ¼

�8T5

128m2v4
sv

4
c
KcðK�2

s þ K2
s � 2ÞR t Imf½4cosh2ðxþ itÞ þ 2��

sinhðxþ itÞ�4 sinhðxvc=vs þ itÞ�2 sinhðxvc=vs � itÞ�2g.
As Jc ! Jc þ P=m, � is given by � ¼ �̂11 þ 2�̂13=mþ
�̂33=m

2 (the corresponding correction to Jh is subleading
and therefore omitted).

An example for the expected doping and T dependencies
is shown in Fig. 3 for a filling close to 1=4 using parameters
consistent with existing resistivity data for ðTMTSFÞ2PF6
[15]. Both �ðTÞ and �ð!Þ in this system can be explained
[15] by umklapp scattering in a 1=4-filled Luttinger liquid
with Kc � 0:22 leading to �� g2T16Kc�3 (i.e., ��
T�0:56; see Fig. 3) along the chain. Other parameters like
Ks, vs, m, and, most importantly, disorder strength D are
not known experimentally. The absence of any visible
disorder contribution to �ðTÞ in the Luttinger liquid regime
T * 100 K allows us to estimate crudely D � 0:0005 in
units of g2=a2nc�3. Our results shown in Fig. 3 strongly
suggest that a large violation of the WF law (after sub-
traction of the phonon contribution not discussed here)
should be observable in Bechgaard salts and similar
materials.

Qualitatively, the doping dependence of L=L0 for 1=4
and 1=3 filling are similar. The WF ratio L=L0 shows a
pronounced sharp peak of height 1= ~D followed by a dip for
vc�k� T. T dependencies might differ in the two cases
due to the different T dependence of ~D: Whether 1= ~D
grows or shrinks upon lowering T depends on Kc and Ks.
However, the most prominent T dependence arises from
the fact that umklapp scattering is effectively switched off
at lowest T for �� > 0, resulting in L� L0.
We expect that the strong violation of the WF law in

regimes where umklapp scattering is large compared to
disorder will not only occur for the strictly 1D systems
discussed here but even if a weak interchain tunneling (as
in the case of Bechgaard salts) is taken into account, as a
small modulation of the 1D bands does not affect the
structure of approximate conservation laws; see [11].
Besides the disparate behavior of �=T and�, an interesting
finding of our study is the importance of thermoelectric
corrections for the slightly doped system. In the regime
where L=L0 gets very small due to a partial cancellation of
�0 and TS2�, the dimensionless thermoelectric figure of
merit ZT ¼ T�S2=�0, which measures the efficiency of a
thermoelectric element for power generation or refrigera-
tion, becomes 1, a remarkably large value [17].
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FIG. 3 (color online). Lorenz number (lower curves), �, and �
(upper curves) for a system close to 1=4 filling (�FIT ¼ 10T�0:56

is the fit to �), where Kc ¼ 0:22 (chosen to be compatible with
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