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We present an efficient implementation of the van der Waals density functional of Dion et al. [Phys.

Rev. Lett. 92, 246401 (2004)], which expresses the nonlocal correlation energy as a double spatial

integral. We factorize the integration kernel and use fast Fourier transforms to evaluate the self-consistent

potential, total energy, and atomic forces, in OðN logNÞ operations. The resulting overhead, for medium

and large systems, is a small fraction of the total computational cost, representing a dramatic speedup over

the OðN2Þ evaluation of the double integral. This opens the realm of first-principles simulations to the

large systems of interest in soft matter and biomolecular problems. We apply the method to calculate the

binding energies and the barriers for relative translation and rotation in double-wall carbon nanotubes.
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Density functional theory (DFT) has become the method
of choice for first-principles simulations of static and dy-
namical properties of complex materials with strong ionic,
covalent, and metallic interactions. However, weak van der
Waals (vdW) interactions are also essential for many sys-
tems and processes, like molecular solids and liquids,
surface adsorption, and biological reactions [1]. Local or
semilocal density functionals obviously cannot describe
asymptotically the nonlocal dispersion correlations. At
binding distances, they have been frequently found to
give reasonable results in some cases [2,3] but their ability
to do so is generally very sensitive to the specific functional
used and its parametrization details, making this approach
rather questionable and unreliable. Thus, the simulation of
vdW systems has typically relied on atom-atom potentials
with the conventional [4] r�6 asymptotic behavior and with
parameters fitted to empirical data or to accurate quantum
chemistry calculations of simple molecules. Such poten-
tials are also added as plug-ins to ab initio semilocal
density functionals [5,6]. Another approach includes
vdW interactions through effective atom-electron pseudo-
potentials [7]. However, the accuracy and reliability of
such approaches is limited because vdW energies arise
from electron-electron correlations that depend not only
on the atomic species but also on their chemical environ-
ment. More ab initio wave function-dependent approaches
are more reliable but also much more expensive [8].

Thus, a key development has been the proposal by Dion
et al. [9] of a universal nonlocal energy functional of the
electron density nðrÞ with the form

Exc½nðrÞ� ¼ EGGA
x ½nðrÞ� þ ELDA

c ½nðrÞ� þ Enl
c ½nðrÞ� (1)

where the exchange energy EGGA
x is described through the

semilocal generalized gradient approximation (GGA) [10]
and the correlation energy has a local part ELDA

c , described
in the local density approximation (LDA), and a nonlocal
(nl) part Enl

c given by

Enl
c ½nðrÞ� ¼ 1

2

ZZ
d3r1d

3r2nðr1Þnðr2Þ�ðq1; q2; r12Þ (2)

where r12 ¼ jr1 � r2j, and q1, q2 are the values of a
universal function q0½nðrÞ; jrnðrÞj�, evaluated at r1 and
r2. The kernel � has also a precise and universal form
that in fact depends only on two variables d1 ¼ q1r12 and
d2 ¼ q2r12, but it can obviously be written also as a
function of q1, q2, and r12, what we will find convenient.
The shape of � obeys that: (i) Enl

c is strictly zero for any
system with constant density; and (ii) the interaction be-
tween any two molecules has the correct r�6 dependence
for large separations r. Using a direct evaluation of Eq. (2),
this vdW functional has been applied successfully to a
variety of systems, including interactions between pairs
of atoms and molecules, molecules adsorbed on surfaces,
molecular solids, and biological systems [11]. However,
the double spatial integral poses prohibitive computational
demands for the very large scale simulations required in
soft-matter and biomolecular problems. For such systems,
a new algorithm is needed to improve the efficiency and the
scaling with system size.
If q1 and q2 in Eq. (2) were fixed values, independent of

r1 and r2, E
nl
c would be a simple convolution, like the

Coulomb energy, that could be evaluated by Fourier meth-
ods. Therefore, our key step for an efficient implementa-
tion is to expand the kernel � as

�ðq1; q2; r12Þ ’
X
��

�ðq�; q�; r12Þp�ðq1Þp�ðq2Þ (3)

where q� are fixed values, chosen to ensure a good inter-
polation of function �. In order to illustrate how the
factorization (3) can be performed in a systematic way,
we consider first the interpolation of a function fðxÞ using a
linear scheme, like those of Lagrange, Fourier, or splines:
fðxÞ ’ P

�f�p�ðxÞ, where f� ¼ fðx�Þ and p�ðxÞ is the
function resulting from the interpolation of the particular
values f� ¼ ���. In Lagrange interpolation, it is a poly-
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nomial of given order. In Fourier interpolation it has the
form sin½�ðx� x�Þ=�x�=½�ðx� x�Þ=�x�. We use cubic
splines, in which p�ðxÞ is a succession of cubic polyno-
mials in every interval [x�, x�þ1], matching in value and

the first two derivatives at every point x�. Notice that p�ðxÞ
depends on the interpolation scheme and on the (fixed)
points x�, but not on the interpolated function. In two-
dimensional interpolation, one typically interpolates first
in one variable and then in the other:

fðx; yÞ ’ X
�

fðx; y�Þp�ðyÞ ’
X
�

�X
�

fðx�; y�Þp�ðxÞ
�
p�ðyÞ

(4)

which shows that such an interpolation leads automatically
to an expansion in terms of factored functions of x and y.
Thus, Eq. (3) is just the interpolation of a three-
dimensional function in its first two variables. In this latter
case, however, the interpolation points q� must be appro-
priate for every value of the third variable r12.

The fact that r12 acts as a scaling factor (i.e., increasing
r12 merely ‘‘contracts’’ � as a function of q1 and q2,
without changing its shape) suggests a logarithmic mesh
of points q�, in which ðq�þ1 � q�Þ ¼ �ðq� � q��1Þ, with
� > 1. Such a logarithmic mesh is also suggested by the
shape of �ðd1; d2Þ shown in Fig. 1 of Ref. [9]. We have
found that N� � 20 interpolation points q� are sufficient
for an accurate description of � up to a cutoff qc at which
we artificially ‘‘saturate’’ the original function q0ðn; jrnjÞ
by redefining qsat0 ðn; jrnjÞ ¼ h½q0ðn; jrnjÞ; qc�, where

hðx; xcÞ is a smooth function such that hðx; xcÞ ’ x for x <
xc and hðx; xcÞ ! xc for x ! 1:

hðx; xcÞ ¼ xc

�
1� exp

�
� Xmc

m¼1

ðx=xcÞm
m

��
(5)

with mc � 12 and qc � 5 a:u:. Higher q0 values are ob-
tained only for very large nðrÞ (i.e., close to the nucleus,
where Enl

c is negligible compared to other terms in Exc),
and for large jrnj=n [in the electron density tails, where
Enl
c is negligible because of the factor nðrÞ in the integrand

of Eq. (2)]. In what follows, we will omit, but assume,
super index ‘‘sat’’ in q0ðn; jrnjÞ.

A minor but significant difficulty is that �ðd1; d2Þ has a
logarithmic divergence when d1, d2 ! 0, what prevents its
straightforward interpolation. Therefore, we interpolate
and use instead a modified ‘‘soft’’ form

�sðd1; d2Þ ¼
�
�0 þ�2d

2 þ�4d
4 if d < ds

�ðd1; d2Þ otherwise;
(6)

where d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d21 þ d22

q
. �0 and ds are fixed parameters,

and �2, �4 are adjusted so that �sðd1; d2Þ and �ðd1; d2Þ
match in value and slope at d ¼ ds (for given d2=d1).
This modification leads to a change in Enl

c , which is cor-
rected using a local density approximation, �Enl

c ¼R
d3rnðrÞ��nlc ðrÞ, where

��nlc ðrÞ¼nðrÞ
2

Z 1

0
4�r02dr0½�ðq;q;r0Þ��sðq;q;r0Þ� (7)

with q ¼ q0ðnðrÞ;rnðrÞÞ. The evaluation of �Enl
c and its

derivatives is performed, like that of the semilocal terms in
Eq. (1), as in Ref. [12]. In what follows, we will assume,
but omit for simplicity, the subindex s in �s.
Substitution of (3) into (2) leads to

Enl
c ¼ 1

2

X
��

ZZ
d3r1d

3r2��ðr1Þ��ðr2Þ���ðr12Þ

¼ 1

2

X
��

Z
d3k���ðkÞ��ðkÞ���ðkÞ (8)

where ��ðrÞ ¼ nðrÞp�½q0ðnðrÞ;rnðrÞÞ� and ��ðkÞ is its
Fourier transform. Equally,���ðkÞ is the Fourier transform
of ���ðrÞ � �ðq�; q�; rÞ. It can be calculated in spherical
coordinates, and stored in a radial mesh of points k for
convenient interpolation. Thus, the heavier part of the
calculation is the fast Fourier transforms of the N� func-
tions ��ðrÞ, which still have a very moderate cost in a
typical density functional calculation.
The evaluation of atomic forces requires the use of the

Hellman-Feynman theorem, which holds only if the full
energy functional is minimized self-consistently. In turn,
this requires the nonlocal part of the correlation potential,
i.e., the functional derivative of Eq. (2) [13]. To handle the
gradient dependence in q0ðn;rnÞ we use the same tech-
nique as in Ref. [12]: approximating the spatial integrals by
sums in a uniform grid of points, and the gradients by finite
differences in the same grid. This makes Enl

c an ordinary
function of the densities ni at fixed grid points ri, allowing
us to perform conventional partial derivatives, rather than
functional derivatives. Besides its conceptual simplicity,
this method ensures a perfect consistency between the
calculated potential and the energy:

Enl
c ¼ 1

2
��2

X
��

X
ij

��i��j���ðrijÞ; (9)

where �� is the volume per grid point and ��i �
nip�½q0ðni;rniÞ�. Notice that ���ðrijÞ does not depend

on ni, since the values q� are fixed. Thus, defining vnl
i �

ð@Enl
c =@niÞ=��, we obtain

vnl
i ¼ X

�

�
u�i

@��i
@ni

þX
j

u�j
@��j
@rnj

@rnj
@ni

�
; (10)

where @rnj=@ni are fixed coefficients (determined by the

finite difference formula used for rnj) that depend only on
rij and that are nonzero only for small rij. Also,

u�i ¼ ��
X
�

X
j

��j���ðrijÞ (11)

is a convolution that can be obtained using fast Fourier
transforms since (apart from � and volume factors)Z

d3r2��ðr2Þ���ðr12Þ¼
Z
d3keikr1��ðkÞ���ðkÞ: (12)
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Thus, a self-consistency step requires N� direct transforms
to find ��ðkÞ and N� inverse transforms to obtain u�ðrÞ.
The calculation of the atomic forces does not require any
additional effort, since the nonlocal contribution vnl

i is

simply added to the semilocal terms [12] in vxc
i and to

the rest of the effective potential. Notice that the imple-
mentation is independent of the basis set, accepting nðriÞ in
a uniform real-space grid ri and returning Exc and vxcðriÞ
in the same grid. It has been checked [14] that it reproduces
accurately the results obtained by direct evaluation of
Eq. (2) and its functional derivative [13], and it has been
already used to study hydrogen adsorption in a large metal
organic framework [15].

Kleis et al. [16] have studied previously the interaction
between parallel, nonconcentric carbon nanotubes, using
the vdW density functional. We have applied our imple-
mentation to study the interaction between the concentric
layers of double-wall carbon nanotubes (DWNTs). Such
interactions are crucial for different nanodevices proposed
recently [17,18] and they have been studied with semi-
empirical potentials [19] and with a local DFT functional
[20–22]. We have used the SIESTA code [23,24] with an
optimized [25] triple-	 þ polarization basis set of pseudo
atomic orbitals, correcting for basis set superposition errors
(BSSE). The integration grids in real and reciprocal space
had cutoffs of 300 Ry and 20 Å [26] respectively, ensuring
at least 34, 20, and 14 k points for the armchair, zigzag, and
chiral DWNTs studied. The atomic forces were relaxed to

less than 20 meV= �A.
Figure 1 shows the calculated interaction energy be-

tween two rigid single-wall nanotubes (SWNTs) (relaxed
independently) as a function of their interwall separation
(difference of radii). It also shows the DWNT formation
energies, defined as the difference between the total energy
of the relaxed DWNT and that of the two SWNTs. The
calculated tubes ðm;mÞ@ðn; nÞ (armchair), ðm; 0Þ@ðn; 0Þ
(zigzag) and (8, 2)@(16, 4) (chiral) were chosen for their
commensurability in the longitudinal direction, as well as
for comparison with prior calculations. Several conclu-
sions can be reached from the figure: (i) The LDA under-
estimates the interaction by a factor of 2. (ii) The
interaction energy per atom depends negligibly on the
nanotube chirality and size (curvature), being very well
represented by the interaction between two flat graphene
layers. (iii) The relaxation of the radii, induced by the
interaction, leads to a steeper repulsion than between flat
graphene layers. (iv) For sufficiently long tubes, in which
the border effects can be neglected, the calculated vdW
interaction energy gives a telescopic contraction force [18]
F ¼ 0:29 N=m� C, where C is the mean of the inner and
outer tube circumference lengths. This is in reasonable
agreement with the experimental value of 0:16 N=m
[27], given the experimental uncertainties.

We also calculated the spatial distribution of the non-
local energy density, i.e., of the integrand of Eq. (2) in-
tegrated over one of the two positions [28]. It can be seen

that such energy densities are concentrated in the outer
side of the inner tube and in the inner side of the outer
tube, but otherwise following closely the electron density
distributions.
Next, the two concentric tubes of the DWNTs were

moved rigidly, relative to each other, in order to construct
rotation-translation energy maps. To represent the calcu-
lated maps, we first project the inner tube coordinates onto
the outer tube surface, i.e., we multiply its x and y coor-
dinates (the tube axis being z) by the ratio Rout=Rin be-
tween the two radii. We then unroll the coordinates of both
tubes onto a flat surface, repeating them periodically also
in the x axis. This gives two flat periodic lattices (com-
mensurate in the cases considered) with reciprocal unit cell
vectors ai and bi, i ¼ 1, 2. The energy maps can then be
represented, as a function of the position x on this surface,
relative to the minimum, by an expansion of the form

UðxÞ ¼ U0 � 1

4

X
G�0

UG cosðG � xÞ (13)

where G are the super lattice wave vectors, common to the
reciprocal lattices a and b, and UG are the barrier heights
for motion along G. We have found that limiting this
expansion to the first two wave vector stars, �G1 and
�G2 (which, in the cases studied, are parallel and orthogo-
nal to the axial direction), gives a good approximation to
the cases studied, with the parameters given in Table I.
Overall, the relative values of these barrier heights are in

qualitative agreement with previous calculations, i.e.,
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FIG. 1. Interaction and formation energies between different
double-wall carbon nanotubes, as a function of interwall sepa-
ration, using LDA [29] (squares), GGA [30] (circles), and van
der Waals [9] (triangles) functionals. Interaction energies (empty
symbols) are between two individually relaxed rigid tubes.
Formation energies (filled symbols) include also the geometry
relaxation induced by the interaction, that modifies their inter-
wall separation. The tube geometries are ð5; 5Þ@ðn; nÞ (	,h,4),
ðm;mÞ@ðn; nÞ m> 5 (5), ðm; 0Þ@ðn; 0Þ (x), and (8, 2)@(16, 4)
(v). For comparison, we also show the interaction energies for
two flat graphene layers (lines). All energies are divided by the
total number of atoms in both tubes. Our estimated error bar is
�1 meV=atom.
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larger barrier distances lead to larger barrier heights.
Quantitatively, however, those calculations vary by an
order of magnitude depending on the models used
[19,20]. Our calculated LDA barriers are similar to those
of Refs. [20–22]. The small discrepancies with Ref. [22]
may be due to the different basis sets and to our finer k
point sampling. We find that, while the LDA systematically
underestimates the interaction energies, it overestimates
the barrier heights, relative to the vdW results. Our calcu-
lated barriers for the easy direction of armchair and zigzag
nanotubes are �3–4 times larger than the experimental
value of �17 
eV=atom [17]. Our estimate for the static
frictional force, Fs ¼ ðdU=dxÞmax ¼ �UG=2�x, is also
larger than the experimental value [18] of 2:3�
10�14 N=atom by the same factor. Given the experimental
uncertainty of the nanotube chiralities, we consider this
agreement quite satisfactory.

In conclusion, we have described an efficientOðN logNÞ
algorithm to include van der Waals interactions through the
self-consistent treatment of a nonlocal ab initio functional
proposed recently [9]. Even for a system of only 50 atoms,
the CPU time to calculate the xc potential is �103 times
smaller than with the original OðN2Þ formulation [14]. In
fact, it is only �10 times larger than with the GGA, i.e.,
still negligible in any medium or large DFT simulation.
Using this implementation, we have calculated the inter-
action energies, as well as the barriers for relative displace-
ment, between concentric tubes in several armchair,
zigzag, and chiral DWNTs.
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TABLE I. Periodicities (�xi ¼ 2�=Gi, in Å) and energy bar-
riers Ui (in meV per outer tube atom) for translation (i ¼ z) and
rotation (i ¼ �) of the outer tube, relative to the inner tube, in
double-wall carbon nanotubes. �x� lengths are along the outer

tube circumference. For the (8, 2)@(16, 4) tube we found that all
the LDA and vdW barriers are smaller than our computational
accuracy of �0:01 meV=atom.

DWNT (5, 5)@(10, 10) (9, 0)@(18, 0) (8, 2)@(16, 4)

�xz 1.24 2.15 0.47

�x� 2.15 1.24 0.81

ULDA
z 0.07 1.38 0.00

ULDA
� 0.48 0.16 0.00

UvdW
z 0.04 1.22 0.00

UvdW
� 0.43 0.06 0.00
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