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Time’s Barbed Arrow: Irreversibility, Crypticity, and Stored Information
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We show why the amount of information communicated between the past and future—the excess
entropy—is not in general the amount of information stored in the present—the statistical complexity.
This is a puzzle, and a long-standing one, since the former describes observed behavior, while optimal
prediction requires the latter. We present a closed-form expression for the excess entropy in terms of
optimal causal predictors and retrodictors—both € machines of computational mechanics. This leads us to
two new system invariants: causal irreversibility—the asymmetry between the causal representations—
and crypticity—the degree to which a process hides its state information.
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Constructing a theory can be viewed as our attempt to
extract from measurements a system’s hidden organiza-
tion. This suggests a parallel with decryption whose goal is
to reveal internal correlations within an encrypted data
stream [1]. The hidden message is revealed only to a
recipient with the correct codebook. This is essentially
the circumstance a scientist faces when building a model
from measurements: What are the hidden states and dy-
namic in the observed data?

In this view, the now-long history in nonlinear dynamics
of reconstructing models from time series [2,3] is cast as a
self-decoding problem, where the information used to
build a model is only that available in the observed process.
That is, no “‘sideband” communication, prior knowledge,
or disciplinary assumptions are allowed. Nature speaks for
herself only through the data she willingly gives up.

Here, we show that the parallel is more than metaphor:
building a model corresponds directly to decrypting the
hidden state information in measurements. The results
show why predicting and modeling are, at one and the
same time, distinct and intimately related. Along the
way, we clarify the role and types of information in pre-
diction and modeling. We show how to measure the degree
of hidden information and identify a new kind of statistical
irreversibility.

A process Pr(X, X) is a communication channel with a
fixed input drstrrbutlon Pr(X) It transmits 1nf0rmat10n
from the past X=..X_ 3X_»,X_; to the future X =
XoX1X; ... by storing it in the present. Here, X, is the
discrete random variable for the measurement outcome at
time ¢, such as the observed z component of a spin or the
symbolic dynamics of a chaotic system.

Our goal is also simply stated: We wish to predict the
future using information from the past. At root, a predic-
tion is probabilistic, specified by a distribution of possible

futures X given a particular past x: Pr(X|x). At a mini-
mum, a good predictor needs to capture all of the informa-
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tion I shared between past and future: E = I[X; X]—the
process’s excess entropy ([4], and references therein).
Consider now the goal of modeling: build a representa-
tion that not only allows good prediction, but also ex-
presses the mechanisms that produce a system’s behavior.
To build a model of a process, computational mechanics [5]
introduced an equivalence relation x ~ X' to group all
histories that give rise to the same prediction—resulting
in a map from pasts to the causal states: e(x)=

" Pr(XIx) = Pr(XIx )} A process s causal states, S =

Pr(X X) / ~ , partition the space X of pasts into sets that
are predictively equivalent. The set of causal states can be
discrete, fractal, or continuous. State-to-state transitions
are denoted by matrices ng, whose elements give the
probability of transitioning from one state S to the next
S’ on seeing measurement value x. The resulting model,
consisting of the causal states and transitions, is called the
process’s € machine.

Causal states have the Markovian property that they
render the past and future statistically independent; they

shield the future from the past [5]: Pr()?,XIS) =

Pr(}?IS) Pr(?lS). In this way, the causal states give a
structural decomposition of the process into conditionally
independent modules. Moreover, they are optimally pre-
dictive [5] in the sense that knowing which causal state a
process is in 1_s lust as good as having the entire past:
Pr(X|S) = Pr(X|X). In other words, causal shielding is
equivalent to the fact [5] that the causal states capture all
of the 1nf0rmat10n shared between past and future:
1[S; X]

Naturally, there can be alternative models; denote their
states R. Consider the subset of tliese that are optimally
predictive—those for which I [R:X] =
noted their states as R. Out of all optimally predictive

models, the € machine captures the minimal amount of
information that a process must store in order to commu-

E, where we de-
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nicate all of the excess entropy from the past to the future.
This is the statistical complexity [5]: C,, = H[S]= H] [R],
where w reminds us of the dependence on the dynamical
system’s underlying invariant measure. In short, E is the
effective information transmission capacity of the process,
viewed as a channel, and C u is the sophistication of that
channel.

In addition to E and C,, another key (and historically
prior) invariant for dynamical systems and stochastic pro-
cesses is the entropy rate h,—a process’s degree of
intrinsic randomness [6]. Importantly, the € machine im-
mediately gives two of these three important invariants: a
process’s rate (h,) of producing information and the
amount (C,,) of historical information stored in doing so.

To date, E cannot be as directly calculated as the entropy
rate and the statistical complexity. One practical conse-
quence is that it is difficult to know when one has obtained
a good estimate of E. These are truly unfortunate, since
excess entropy, and related mutual information quantities,
are widely used diagnostics for processes, having been
applied to detect the presence of organization in dynamical
systems [2,3,7,8], in spin systems [9,10], in neurobio-
logical systems [11,12], and even in language, to mention
only a few applications. For example, in natural language
the excess entropy appears to diverge with string length L
as E o L'/2, reflecting the long-range and strongly non-
ergodic organization necessary for human communication
[13,14].

This state of affairs has been a major impediment to
understanding the relationships between modeling and
predicting and, more concretely, the relationships between
(and even the interpretation of) a process’s basic invari-
ants—h,, C,,, and E [15]. Here, we clarify these issues by
deriving explicit expressions for E in terms of the €
machine and C,,, providing a unified information-theoretic
analysis of stationary processes.

The above development of € machines concerns using
the past to predict the future. But what about the opposite,
using the future to retrodict the past? Usually, one thinks of
successive measurements occurring as time increases.
Now, consider scanning the measurement variables not in
the forward time direction, but in the reverse time direc-
tion. The computational mechanics formalism is essen-
tially unchanged, though its meaning and notation need
to be augmented.

With this in mind, the previous mapping from pasts to
causal states is denoted €™ and it gave, what we will call,
the predictive causal states S*. When scanning in the
reverse direction, we have a new relation, x ~~ x’, which
groups futures that are equivalent for the purpose of retro-
dicting the past: € (x) = {x’ Pr(X|¥) = Pr(X|X")}. It
gives the retrodictive causal states S~ = Pr(‘)?, )?)/ ~~
And, not surprisingly, we must also distinguish a process’s
forward-scan € machine M from its reverse-scan € ma-
chine M~. They assign corresponding entropy rates, h;

and h,, and statistical complexities, C,, = H[S"] and
C, = H[S™], respectively, to the process.

Now we are in a position to ask some questions. Perhaps
the most obvious is, In which time direction is a process
most predictable? The answer is that a stationary process is
equally predictable in either [5]: h, = hj;. Somewhat
surprisingly, though, the effort involved in doing so need
not be the same [16]: C,, # C:;. Naturally, E is mute on
this score, since the mutual information / is symmetric in
its variables [4].

The relationship between predicting and retrodicting a
process, and ultimately E’s role, requires teasing out how
the states of the forward and reverse € machines capture
information from the past and the future. To do this we
must_ analyze a four-variable mutual information:
I[X;X;S87;8]. A large number of expansions of this
quantity are possible. A systematic development follows
from Ref. [17] which showed that Shannon entropy H|:]
and mutual information I[-; -] form a signed measure over
the space of events.

Using an information measure expansion, it turns out
there are 15 possible relationships to consider for

I[X; X;S*; S ]. Fortunately, this greatly simplifies in the
case of using an € machine to represent a process: There
are only five relationships. (See Fig. 1.) Simplified in this
way, we are left with our main results which, due to the
preceding effort, are particularly transparent.

Theorem 1. Excess entropy is the mutual information
between the predictive and retrodictive causal states:

E =I[S";57]. (1)

This is obtained via a simultaneous reduction of the four-
variable mutual information into /[X; X] and I[é'+ B ST
Notably, the process’s channel utilization E = I[X; X] be-
tween the past and future is the same as the utilization
between the forward and reverse e-machine states.
Moreover, the predictive statistical complexity is given
by C,, =E + H[S"|S™] and the retrodictive statistical
complexity by C, = E + H[S™|S"].

Theorem 1 and the companion results give an explicit
connection between a process’s excess entropy and its
causal structure—its € machines. More generally, the rela-

H[S1=Cp

HIST1=Cq

FIG. 1 (color). e-machine information diagram for stationary
stochastic processes. A schematic, the diagram only shows the
set-theoretic relationships.
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tionships directly tie mutual information measures of ob-
served sequences to a process’s structure. They will allow
us to probe the properties that control how closely observed
statistics reflect a process’s hidden structure, that is, the
degree to which observed behavior directly reflects internal
state information.

At this point we have two separate € machines: one for
predicting and one for retrodicting. We will now show that
one can do better, by combining causal information from
the past and future. Consider scanning a realization, x =
X,X,, of the process in the forward direction—seeing his-
tories x, and noting the series of causal states S, =
€™ (x,). Now change direction. What reverse causal state
is one in? This is S; = €~ (X,). We describe the action of
changing scan direction with the bidirectional machine

+

M=, which is given by the equivalence relation ~*:

(X)) ={x %)X €e"(x) and ¥ € e (X)}
and has causal states S* = Pr(X, X)/~* C St X S".
That is, the bidirectional causal state the process is in at
time ¢ is S = (e (x,), € (x,)). The amount of stored
information needed to optimally predict and retrodict a
process is M™’s statistical complexity: C,, = H[S™] =
H[S",S87]

From the immediately preceding results we obtain the
following simple, useful relationship: E = C;,f +C, —
C;i. This suggests a wholly new interpretation of the excess
entropy—in addition to the original three reviewed in
Ref. [4]: E is exactly the difference between these statis-
tical complexities. Moreover, only when E = 0 does
Ci = C:; + C,. The bidirectional machine is also effi-
cient: C;, = C,; + C,. And we have the bounds: C, =
C i andC, =C i These inequalities express the compact-
ness of the bidirectional machine in contrast to the pair of
directional € machines. This efficiency of representation is
due to the redundancy in the predictive and retrodictive
causal states.

We noted above that predicting and retrodicting may
require different amounts of information storage (C; *
C,). It is helpful to use causal irreversibility to measure
this asymmetry [16]: £ = C,, — C,,. With the above re-
sults, however, we see that & = H[S*|S™] — H[ST|S*].
Note that irreversibility is also not controlled by E, as the
latter is scan-symmetric.

The relationship between excess entropy and statistical
complexity established by Theorem 1 indicates that there
are fundamental limitations on the amount of a process’s
stored information (Cﬁ) directly present in observations
(E). We now introduce a measure of this: A process’s
crypticity is y = H[S'|S™]+ H[S™|S™]. This is the dis-
tance between a process’s forward and reverse € machines
and expresses, most explicitly, the difference between
prediction and modeling. To see this, we need the follow-
ing connection.

Corollary 1. M=’s statistical complexity is
. =E+x 2

Referring to y as crypticity derives from this result: It is the
amount of internal state information (C:—;) not directly
present in the observed sequence (E). That is, a process
hides y bits of information.

If crypticity is low (y = 0), then much of the stored
information is present in observed behavior: E = C.
However, when a process’s crypticity is high, y = Ci,
then little of its structural information is directly present
in observations. Moreover, there are truly cryptic processes
(E = 0) that are highly structured (C;i > (). Little or
nothing can be learned from measurements about such
processes’ hidden organization.

The e-machine information diagram of Fig. 1 encapsu-
lates all of these results concisely by showing the key
relationships between information production (H[X|S]
and H[X|S™]), stored information (C,, and C,), and ex-
cess entropy (E = I[X; X]). Analyzing the 4-variable in-
formation diagram revealed a parsimonious relationship
among the four variables, depicted as differently shaded
ellipses. H[X] and H[X] (two largest ellipses) are the
entropies of the past and future, respectively, which are
the process’s total information production. The informa-
tion stored in the predictive € machine M* is its statistical
complexity: C,, = H[S™] (small ellipse on left); likewise
for M~, C,, = H(S™) (small ellipse on right). The excess
entropy E is the intersection of these sets; while the sta-
tistical complexity C;; of the bidirectional machine M~ is
their union; the crypticity, their symmetric difference; and
their signed difference, the causal irreversibility =.

Consider an example that illustrates the typical pro-
cess—cryptic and causally irreversible. This is the random
insertion process (RIP) which generates a random bit with
bias p. If that bit is a I, then it outputs another 1. If the
random bit is a 0, however, it inserts another random bit
with bias g, followed by a 1.

Its forward € machine, see Fig. 2(a), has three recurrent
causal states ST = {A, B, C} and the transition matrices
given there. Figure 2(b) gives M~ which has four recurrent
causal states S~ ={D, E, F, G}. We see that the € ma-
chines are not the same and so the RIP is causally irrevers-
ible. A direct calculation gives Pr(S*) = Pr(4, B, C) =
(L p,1)/(p +2) and Pr(S7™) =Pr(D,E F,G) =
(1,1 = pq, pg, p)/(p +2).1If p=¢g = 1/2, for example,
these give us C; ~ 1.5219 bits, C; ~ 1.8464 bits, and
h,, = 3/5 bits per measurement. The causal irreversibility
is E =~ 0.3245 bits.

Let us analyze its bidirectional machine, shown in
Fig. 2(c) for p = g = 1/2. The interdependence between
the forward and reverse states is given by
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FIG. 2. Forward and reverse € machines for the RIP: (a) M*
and (b) M~ . Edge labels ¢|x give the transition probabilities t =
ng,. (c) The bidirectional machine M~ for p = ¢ = 1/2. Edge
labels are prefixed with the scan direction {—, +}.
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By way of demonstrating the exact analysis now possible,
E’s closed-form expression for the RIP family is

plogzp_l—qu(l—p>
p+2 p+2 1—pq)’

where H(:) is the binary entropy function. The first two
terms on the right-hand side are C, and the last is
H[S*|S7].

Setting p = g = 1/2, one calculates that Pr(S*) =
Pr(AE, AG, BE, BF, CD) = (1/5,1/5,1/10, 1/10, 2/5).
This and the joint distribution give C, = H[S™]=
2.1219 bits, but an E = I[S*; S ] = 1.2464 bits. That
is, the excess entropy (the apparent information) is sub-
stantially less than the statistical complexities (stored in-
formation)—a rather cryptic process: y = 0.8755 bits.

To close, the main results establish that when y > 0 one
cannot simply use sequence information directly to repre-
sent a process as storing E bits of information. We must
instead store Cu bits of information, building a causal
model of the hidden state information. Why? Because
typical processes encrypt their state information within
their observed behavior. More particularly, observed infor-
mation can be arbitrarily small (E = 0) compared to the
stored information (C,,).

In deriving an explicit relationship between excess en-
tropy and the € machine, the framework puts prediction on

E =log(p +2) -

an equal footing with modeling, allowing for a direct
comparison between them [18]. Also, as we demonstrated
with the RIP example, it gives a way to develop closed-
form expressions for E. Finally and most generally, it
reveals an intimate connection between unpredictability,
irreversibility, crypticity, and information storage.

Practically, these results elucidate the difference be-
tween observed (mutual) information (E) and a process’s
stored information (C, ). Analyzing a process only in terms
of mutual information misses an arbitrarily large amount of
a process’s structure. When this happens, one concludes
that a process is more random than it is and that it has little
structure, when neither is true.
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