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We show that the addition of real scalars (gauge singlets) to the standard model can both ameliorate the

little hierarchy problem and provide realistic dark matter candidates. To this end, the coupling of the new

scalars to the standard Higgs boson must be relatively strong and their mass should be in the 1–3 TeV

range, while the lowest cutoff of the (unspecified) UV completion must be * 5 TeV, depending on the

Higgs boson mass and the number of singlets present. The existence of the singlets also leads to realistic,

and surprisingly reach, neutrino physics. The resulting light neutrino mass spectrum and mixing angles are

consistent with the constraints from the neutrino oscillations.
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Introduction.—The goal of this project is to provide the
most economic extension of the standard model (SM) for
which the little hierarchy problem is ameliorated while
retaining all the successes of the SM. We focus here on
leading corrections to the SM, so we will consider only
those extensions that interact with the SM through renor-
malizable interactions (below we will comment on the
effects of higher-dimensional interactions). Since we con-
centrate on taming the quadratic divergence of the Higgs
boson mass, it is natural to consider extensions of the scalar
sector: when adding a new field ’, the gauge-invariant
coupling j’j2HyH (where H denotes the SM scalar dou-
blet) will generate additional radiative corrections to the
Higgs boson mass that can serve to soften the little hier-
archy problem. In this Letter we will consider a class of
modest extensions by adding several real scalar fields
which are neutral under the SM gauge group. The exten-
sion we consider, although renormalizable, will still be
understood to constitute an effective low-energy theory
valid up to energies �5–10 TeV; we shall not discuss the
UV completion of this model.

The little hierarchy problem.—Within the SM the quad-
ratically divergent 1-loop correction to the Higgs boson (h)
mass is given by

�ðSMÞm2
h ¼ ½3m2

t =2� ð6m2
W þ 3m2

ZÞ=8
� 3m2

h=8��2=ð�2v2Þ (1)

where� is a UV cutoff (we use a cutoff regularization) and
v ’ 246 GeV denotes the vacuum expectation value of the
scalar doublet (SM logarithmic corrections are small since
we assume v � � & 10 TeV); the SM is treated here as
an effective theory valid below the physical cutoff �, the
scale at which new physics becomes manifest.

Since precision measurements (mainly from the oblique
Tobl parameter [1]) require a light Higgs boson, mh �
120–170 GeV, the correction (1) exceeds the mass itself
even for small values of �, e.g., for mh ¼ 130 GeV we

obtain �ðSMÞm2
h ’ m2

h already for � ’ 580 GeV. On the

other hand constraints on the scale of new physics that
emerge from analysis of operators of dim 6 require � *
few TeV. This difficulty is known as the little hierarchy
problem.
There are two ways to solve this problem: one adds new

particles whose effects either (i) generate radiative cor-
rections that partially cancel (1), as is done in supersym-
metric theories (for which �m2

h � m2
h up to the GUT

scale); or (ii) increase the allowed value ofmh by canceling
the contributions to Tobl from a heavy Higgs boson (see
e.g., [2]).
Here we follow the first strategy, but with a modest goal:

we construct a simple modification of the SMwithin which
�m2

h (the total correction to the SM Higgs boson mass

squared) is suppressed only up to � & 3–10 TeV. Since
(1) is dominated by the fermionic (top) terms, the most
economic way of achieving this is by introducing new
scalars ’i whose 1-loop contributions balance the ones
derived from the SM. In order not to spoil the SM pre-
dictions we assume that’i are singlets under the SM gauge
group. It is then easy to see that the oblique parameters will
remain unchanged if h’ii ¼ 0 (which we assume here-
after), so that the SM prediction of a light Higgs is pre-
served. An extension of the SM by an extra scalar singlet
was also discussed in [3], there however (classical) con-
formal symmetry was adopted to cope with the hierarchy
problem.

The most general scalar potential consistent with ZðiÞ
2

independent symmetries ’i ! �’i (imposed in order to
prevent ’i ! hh decays) reads:
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VðH;’iÞ ¼ ��2
HjHj2 þ �HjHj4 þXN’

i¼1

ð�ðiÞ
’ Þ2’2

i

þ 1

24

XN’

i;j¼1

�ðijÞ
’ ’2

i ’
2
j þ jHj2 X

N’

i¼1

�ðiÞ
x ’2

i : (2)

In the following numerical computations we assume for

simplicity that �ðiÞ
’ ¼ �’, �ðijÞ

’ ¼ �’ and �ðiÞ
x ¼ �x, in

which case (2) has an OðN’Þ symmetry (small deviations

from this assumption do not change our results qualita-

tively). The minimum of V is at hHi ¼ v=
ffiffiffi
2

p
and h’ii ¼ 0

when �2
’ > 0 and �x, �H > 0 which we now assume. The

masses for the SM Higgs boson and the new scalar singlets
are m2

h ¼ 2�2
H and m2 ¼ 2�2

’ þ �xv
2 (�Hv

2 ¼ �2
H),

respectively.
Stability (positivity) of the potential at large field

strengths requires �H�’ > 6�2
x at tree level. The high

energy unitarity behavior (known [4] for N’ ¼ 1) implies

�H � 4�=3 (the SM requirement) and �’ � 8�, �x < 4�.

Note however that these conditions are derived from the
behavior of the theory at energies E � m, where we do not
pretend our model to be valid, so that neither the stability
limit nor the unitarity constraints are applicable within our
pragmatic strategy that aims at a modest increase of � to
the 3–10 TeV range. These conclusions remain even if one
includes higher-dimensional operators since such terms are
subdominant unless the energies and/or field strengths are
of order �—were the model is not valid; such operators
can also generate spurious minima, but these have scale
�� and are not within the range of validity of the model. It
is also fair to note that for N’ ¼ 1 the stability limit for

mh > 115 GeV implies �’ > 12ð�xv=mhÞ2 * 55�x. Then

using �’ � 8�we find �x & 0:68; this does not allow for a

significant cancellation of the SM contributions (1) and the
little hierarchy problem remains. Increasing N’ suppresses

�x and relaxes the unitarity constrains.
The presence of ’i generates additional radiative cor-

rections tom2
h. (The�

2 corrections tom2 can also be tamed

within the full model with additional fine tuning, but we
will not consider them here, see [5]. However different
ways of imposing the cutoff � (cutoff regularization,
higher-derivative regulators, Pauli-Villars regulators, etc.)
yield different expressions for the extra corrections; for
large�, the coefficients of the�2 andm2 lnð�2=m2Þ terms
are universal, but the subleading, terms are not. Since the
subleading contributions are small for m � � (this is the

range interesting for us) the differences between various
regularization schemes are not relevant. Here we decided
to adopt the simple UV cutoff regularization. Then the
extra contribution to m2

h reads

�ð’Þm2
h¼�½N’�x=ð8�2Þ�½�2�m2 lnð1þ�2=m2Þ�: (3)

Adopting the parameterization j�m2
hj ¼ j�ðSMÞm2

h þ
�ð’Þm2

hj ¼ Dtm
2
h [2], we can determine the value of �x

needed to suppress �m2
h to a desired level (Dt) as a function

of m, for any choice of mh and �; examples are plotted in
Fig. 1 for N’ ¼ 6.

It should be noted that (in contrast to SUSY) the loga-
rithmic terms in (3) can be relevant in canceling large
contributions to �m2

h. (Note that in SUSY the correspond-

ing logarithmic stop contributions survive and constitute a
source of concern.) It is important to note that the required
value of �x is smaller for larger mh, and can also be
reduced increasing the number of singlets N’. When

m � �, the �x needed for the amelioration of the hier-
archy problem is insensitive to m, Dt or �; as illustrated in
Fig. 1; analytically we find

�x ¼ N�1
’ f4:8� 3ðmh=vÞ2 þ 2Dt½2�=ð�=TeVÞ�2g

� ½1�m2=�2 lnðm2=�2Þ� þOðm4=�4Þ: (4)

Since we consider �x � 1, it is pertinent to estimate the
effects of higher order corrections [6] to (1). In general, the
fine tuning condition reads (mh was chosen as a renormal-
ization scale):

j�ðSMÞm2
h þ �ð’Þm2

h

þ�2
X
n¼1

fnð�x; . . .Þ½lnð�=mhÞ�nj ¼ Dtm
2
h; (5)

where the coefficients fnð�x; . . .Þ can be determined recur-
sively [6], with the leading contributions being generated
by loops containing powers of �x: fnð�x; . . .Þ �
½�x=ð16�2Þ�nþ1. To estimate these effects consider the

case where �ðSMÞm2
h þ �ð’Þm2

h ¼ 0 at one loop then, keep-

ing only terms / �2
x, we find, at 2 loops, Dt ’

½N’�x=ð16�2Þ�2ð�=mhÞ2. Requiring Dt & 1 implies � &

4�2mh ’ 5–8 TeV for mh ¼ 130–210 GeV, respectively.
It should be emphasized that in the model proposed here

the hierarchy problem is softened (by lifting the cutoff to
�8 TeV) only if �x, � and m are appropriately fine-tuned;
this fine-tuning, however, is significantly less dramatic than
in the SM. One can investigate this issue quantitatively and
determine the range of parameters that corresponds to a
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16 TeV FIG. 1 (color online). Plot of �x corre-
sponding to Dt ¼ 0 and N’ ¼ 6 as a

function of m for � ¼ 8, 12, 16 TeV
(as indicated above each panel). The
various curves correspond to mh ¼ 130,
150, 170, 190, 210, 230 GeV (starting
with the uppermost curve).
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given level of fine-tuning as in [7]; we will return to this in
a future publication [5].

Dark matter.—The singlets ’i also provide natural dark
matter (DM) candidates (see [8,9], for the one singlet
case). Following [10] one can easily estimate the amount
of the present DM abundance; we will assume for simplic-
ity that all the ’i are equally abundant (e.g., as in the
OðN’Þ limit). The thermal averaged cross section for sin-

glet annihilations into SM final states ’i’i ! SMSM in
the nonrelativistic approximation, and form � mh, equals

h�ivi ’ �2
x

8�m2
þ �2

xv
2�hð2mÞ
8m5

’ 1:73

8�

�2
x

m2
(6)

where the first contribution is from the hh final state (keep-
ing only the s-channel Higgs exchange; the t and u chan-
nels can be neglected since m � mh) while the second
contribution is from all other final states; �hð2mÞ ’
0:48 TeVð2m=1 TeVÞ3 is the Higgs width calculated
when the Higgs boson mass equal 2m.

From this the freeze-out temperature xf ¼ m=Tf is

given by

xf ¼ ln½0:038mPlmh�ivi=ðg?xfÞ1=2� (7)

where g? counts relativistic degrees of freedom at annihi-
lation and mPl denotes the Planck mass. In the range of
parameters we are interested in, xf � 12–50 while m�
1–2 TeV, so that this is a case of cold dark matter. Then the
present density of ’i is given by

�ðiÞ
’ h2 ¼ 1:06 � 109xf=ðg1=2? mPlh�iviGeVÞ: (8)

Finally, the requirement that the ’i account for the

inferred DM abundance, �DMh
2 ¼ PN’

i¼1 �
ðiÞ
’ h2 ¼

0:106	 0:008 [1], can be used to fix h�ivi, which trans-
lates into a relation �x ¼ �xðmÞ through the use of (6).
Substituting this into j�m2

hj ¼ Dtm
2
h, we find a relation

between m and � (for a given Dt), which we plot in Fig. 2
for N’ ¼ 6. It is important to stress that it is possible to

find parameters�, �x andm such that both the hierarchy is
ameliorated to the prescribed level and such that �’h

2 is

consistent with the DM requirement (we use a 3� interval).
It also is useful to note that the singlet mass (as required by

the DM) scales with their multiplicity as N�3=2
’ , therefore

increasing N’ implies smaller scalar mass, e.g., changing

N’ from 1 to 6 leads to the reduction of mass by a factor

�15.
Neutrinos.—We now discuss consequences of the exis-

tence of ’ for the leptonic sector, which we assume con-
sists of the SM fields plus three right-handed neutrino
fields �iR (i ¼ 1, 2, 3) that are also gauge singlets; in this
section we assume only one singlet for simplicity. (The
arguments presented below remain essentially the same
when a different number of right-handed neutrinos is
present.) The relevant Lagrangian is then

L Y ¼ � �LYlHlR � �LY�
~H�R � 1

2
ð�RÞcM�R

� ’ð�RÞcY’�R þ H:c: (9)

where L ¼ ð�L; lLÞT is a SM lepton isodoublet and lR a
charged lepton isosinglets (we omit family indices); we
will assume that the see-saw mechanism explains the
smallness of three light neutrino masses, and accordingly

we require M � MD 
 Y�v=
ffiffiffi
2

p
. The symmetry of the

potential under ’ ! �’ can be extended to (9) by requir-
ing

L ! SLL; lR ! SlRlR; �R ! S�R
�R (10)

where the unitary matrices SL;lR;�R obey

SyLYlSlR ¼ Yl; SyLY�S�R
¼ Y�;

ST�R
MS�R ¼ þM; ST�R

Y’S�R
¼ �Y’:

(11)

In order to determine the consequences of this symmetry
we find it convenient to adopt the basis in which M and Yl

are real and diagonal; for simplicity we will also assume
that M has no degenerate eigenvalues. Then the last two
conditions in (11) imply that S�R

is real and diagonal, so its

elements are	1. For 3 neutrino species there are then two
possibilities (up to permutations of the basis vectors): we
either have S�R

¼ 	1, Y’ ¼ 0, or, more interestingly,

S�R
¼ �diagð1;1;�1Þ; Y’ ¼

0 0 b1
0 0 b2
b1 b2 0

0
@

1
A; �¼	1;

(12)

where b1;2 are, in general, complex. The first conditions in

(11) now require SlR ¼ SL with
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FIG. 2 (color online). The allowed re-
gion in the (m, �) plane for Dt ¼ 0,

N’ ¼ 6 and
PN’

i¼1 �
ðiÞ
’ h2 ¼ 0:106	

0:008 at the 3� level for mh ¼ 130,
170, 210 GeV (as indicated above each
panel).

PRL 103, 091802 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

28 AUGUST 2009

091802-3



SL ¼ diagðs1; s2; s3Þ; jsij ¼ 1: (13)

Before discussing the explicit solutions for Y�, we first
diagonalize (to leading order in M�1) the neutrino mass
matrix in terms of the light (n) and heavy (N) eigenstates:

L m ¼ �ð �nMnnþ �NMN=2Þ (14)

with Mn ¼ ��PR þ�PL, � ¼ �4MDM
�1MT

D, where n
and N are related to �R and �L through �L ¼ nL þ
ðMDM

�1ÞNL and �R ¼ NR � ðM�1MT
DÞnR.

The remaining condition in (11) allows ten (up to per-
mutations of the basis vectors) inequivalent solutions for
Y�. (The conditions (11) where also investigated in [11].)
Of those, assuming single massless neutrino and the ab-
sence of ’ ! ninj decays, only one is acceptable; it cor-

responds to s1;2;3 ¼ � [cf. (12)]. To compare our results

with the data, we use the so-called tri-bimaximal [12]
lepton mixing matrix that corresponds to �13 ¼ 0, �23 ¼
�=4 and �12 ¼ arcsinð1= ffiffiffi

3
p Þ. One can undo the diagonal-

ization of light neutrino mass matrix and check against the
one implied by Y� as a consequence of (11). We find that
there are only two possible forms of Y� that are consistent
with (11) and independent of M, and that agree with tri-
bimaximal mixing:

Y� ¼
a b 0

�a=2 b 0

�a=2 b 0

0
BB@

1
CCA;

m1 ¼ �3v2a2=M1

m2 ¼ �6v2b2=M2

m3 ¼ 0

and Y� ¼
a b 0

a �b=2 0

a �b=2 0

0
BB@

1
CCA;

m1 ¼ �3v2b2=M2

m2 ¼ �6v2a2=M1

m3 ¼ 0

(15)

where a and b are real (for simplicity) parameters. The
resulting mass spectrum is consistent with the observed
pattern of neutrino mass differences, see e.g., [13]. For this
solution only N3 and ’ are odd under the Z2 symmetry
hence the ’ will be absolutely stable if m<M3.

It is noteworthy that the presence of Y’ also leads to an

additional contribution�ð�=�Þ2trY2
’ to �m2 (we assumed

Y’ real for simplicity) so the neutrinos can be used to

ameliorate the little hierarchy problem associated with m
(for this however Y’ cannot be too small) thereby ‘‘clos-

ing’’ the solution to the little hierarchy problem in a spirit
similar to supersymmetry. This interesting scenario will be
discussed elsewhere [5].

Conclusions.—We have shown that the addition of real
scalar singlets ’i to the SM may ameliorate the little
hierarchy problem (by lifting the cutoff � to multi-TeV
range) and also provide realistic candidates for DM. In the
presence of right-handed neutrinos this scenario allows a

light neutrino mass matrix texture that is consistent with
experimental data while preserving all the successes of
leptogenesis as an explanation for the baryon asymmetry.
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