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We report time-resolved measurements of Landau-Zener tunneling of Bose-Einstein condensates in

accelerated optical lattices, clearly resolving the steplike time dependence of the band populations. Using

different experimental protocols we were able to measure the tunneling probability both in the adiabatic

and in the diabatic bases of the system. We also experimentally determine the contribution of the

momentum width of the Bose condensates to the temporal width of the tunneling steps and discuss the

implications for measuring the jump time in the Landau-Zener problem.
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Tunneling is one of the most striking manifestations of
quantum behavior and has been the subject of intense
research in both fundamental and applied physics [1].
While tunneling probabilities can be calculated accurately
and have an intuitive interpretation as statistical mean
values of experimental outcomes, the concept of tunneling
time and its computation are still the subject of debate even
for simple systems [2,3]. The time it takes a quantum
system to complete a tunneling event (which in the case
of cross-barrier tunneling can be viewed as the time spent
in a classically forbidden area) has been widely investi-
gated and measured recently for electrons ionized by atto-
second radiation [4]. It is related to the time required for a
state to evolve to an orthogonal state, and an observation,
i.e., a quantum mechanical projection on a particular basis,
is required to distinguish one state from another [3]. The
measured time depends both on the type of observation
(e.g., a temporal modulation of the potential in the classi-
cally forbidden region [5]) and on the quantum mechanical
basis used, as derived in [6] for Landau-Zener (LZ) tun-
neling [7,8], in which a quantum system tunnels across an
energy gap at an avoided crossing of the system’s energy
levels. Similarly to the tunneling time in real space, the LZ
tunneling time measures the duration of the quantum me-
chanical evolution (which plays an important role, e.g., in
quantum control [9]). In a given quantum basis for the LZ
Hamiltonian, Vitanov [6] defined the ‘‘jump time’’ re-
quired to evolve a state to an orthogonal one, following
previous works [10,11]. The role of the different bases was
also emphasized by Berry [12], who introduced a super-
adiabatic basis with a universal time evolution.

In this Letter we directly measure the dynamics of LZ
tunneling. The tunneling process is frozen at different
times by performing a projective quantum measurement
on the states of a given basis. The jump time is then derived
from the survival probability in the initial state as function
of time [6]. In our experiments, backed up by numerical

simulations, we use ultracold atoms forming a Bose-
Einstein condensate (BEC) inside an optical lattice [13,14].
For cold atoms, LZ tunneling in optical lattices was used

[15,16] for detecting deviations from an exponential decay
law at short times. In contrast to these experiments, our
BEC has an initial width in momentum space that is much
smaller than pB ¼ 2prec ¼ 2�@=dL, the width of the first
Brillouin zone of a periodic potential with lattice constant
dL. This enables us to observe the full dynamics for single
or multiple LZ crossings [17], the only limitation being the
initial momentum width of the condensates and nonlinear
effects. Our experiments are similar to recent studies of LZ
transitions in a solid-state artificial atom [18], but the high
level of control over the light-induced periodic potential
also allowed us to measure the tunneling dynamics in
different eigenbases (adiabatic and diabatic).
In our experiments we created BECs of 5� 104 87Rb

atoms inside an optical dipole trap (mean trap frequency
around 80 Hz). A one-dimensional optical lattice created
by two counterpropagating, linearly polarized Gaussian
beams was then superposed on the BEC by ramping up
the power in the lattice beams in 100 ms. The wavelength
of the lattice beams was � ¼ 842 nm, leading to a sinu-
soidal potential with lattice constant dL ¼ �=2. A small
variable frequency offset between the two beams intro-
duced through the acousto-optic modulators in the setup
allowed us to accelerate the lattice in a controlled fashion.
The time-resolved measurement of LZ tunneling was

done [see Fig. 1(a)] by first loading the BEC into the
ground state energy band of an optical lattice of depth
V0. The lattice was then accelerated with acceleration
aLZ for a time tLZ to a final velocity v ¼ aLZtLZ, resulting
in a force FLZ on the atoms in the lattice rest frame [19].
During tLZ the quasimomentum of the BEC swept the
Brillouin zone, and at multiples of half the Bloch time
TB ¼ 2�@ðMaLZdLÞ�1 (where M is the atomic mass), i.e.,
at times t ¼ ðnþ 1=2ÞTB (n ¼ 0; 1; 2; . . . ) when the sys-
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tem was close to the Brillouin zone edge, tunneling to the
upper band became increasingly likely. At t ¼ tLZ the
acceleration was abruptly reduced to asep � aLZ and the

lattice depth was increased to Vsep in a time tramp � TB.

These values were chosen in such a way that at t ¼ tLZ the
probability for LZ tunneling from the lowest to the first
excited energy band dropped from between � 0:1–0:9
(depending on the initial parameters chosen) to less than
� 0:01, while the tunneling probability from the first ex-
cited to the second excited band remained high at about
0.95. This meant that at t ¼ tLZ the tunneling process was
effectively interrupted and for t > tLZ the measured sur-
vival probability PðtÞ ¼ N0=Ntot (calculated from the num-
ber of atoms N0 in the lowest band and the total number of
atoms Ntot) reflected the instantaneous value Pðt ¼ tLZÞ.

The lattice was then further accelerated for a time tsep
such that aseptsep � 2nprec=M (typically n ¼ 2 or 3). In

this way, atoms in the lowest band were accelerated to a
final velocity v � 2nprec=M, while atoms that had tun-
neled to the first excited band before t ¼ tLZ tunneled to

higher bands with a probability>0:95 and were, therefore,
no longer accelerated. At tsep the lattice and dipole trap

beams were suddenly switched off and the expanded
atomic cloud was imaged after 23 ms. In these time-of-
flight images the two velocity classes 0 and 2nprec=M were
well separated, from which N0 and Ntot could be measured
directly. Since the populations were ‘‘frozen’’ inside the
energy bands of the lattice, which represent the adiabatic
eigenstates of the system’s Hamiltonian, this experiment
effectively measured the time dependence of Pa in the
adiabatic basis. A typical result is shown in Fig. 1(b).
One clearly sees two ‘‘steps’’ at times t ¼ 0:5TB and t ¼
1:5TB, which correspond to the instants at which the atoms
cross the Brillouin zone edges, where the lowest and first
excited energy bands exhibit avoided crossings. For com-
parison, the result of a numerical simulation (integrating
the linear Schrödinger equation for the experimental pro-
tocol) as well as an exponential decay as predicted by LZ
theory are also shown.
The LZ tunneling probability can be calculated by con-

sidering a two-level system with the adiabatic Hamiltonian

Ha ¼ Hd þ V ¼ �t�z þ�E

2
�x; (1)

where �i are the Pauli matrices. The eigenstates of the
diabatic Hamiltonian Hd, whose eigenenergies vary line-
arly in time, are mixed by the potential V characterized by
the energy gap �E. Applying the Zener model [8] to our
case of a BEC crossing the Brillouin zone edge leads to a
band gap �E ¼ V0=2 and to � ¼ 2vrecMaLZ ¼
2F0E

2
rec=ð�@Þ, with Erec ¼ @

2�2=ð2Md2LÞ the recoil energy
and F0 ¼ MaLZdL=Erec the dimensionless force. The
limiting value of the adiabatic and diabatic LZ survival
probabilities (for t going from �1 to þ1) in the eigen-
states of Ha and Hd, respectively, is

Paðt ! þ1Þ ¼ 1� Pdðt ! þ1Þ ¼ 1� PLZ; (2)

where the standard LZ tunneling probability is

PLZ ¼ e��=� (3)

with the adiabaticity parameter � ¼ 4@�ð�EÞ�2 [20].
Figure 2(a) shows the first LZ tunneling step for differ-

ent lattice depths V0, measured in units of Erec at a given
acceleration. The steps can be well fitted with a sigmoid
function

PaðtÞ ¼ 1� h

1þ exp½ðt0 � tÞ=�tLZ� ; (4)

where t0 is the position of the step (which can deviate
slightly from the expected value of 0:5TB, e.g., due to a
nonzero initial momentum of the condensate), h is the step
height, and �tLZ represents the width of the step.
Equations (2) and (3) correctly predict the height h of the
step, as tested in the experiment for a variety of values of
V0 and F0 [see Fig. 2(b)].
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FIG. 1. Time-resolved measurement of LZ tunneling.
(a) Experimental protocol [shown in the band-structure repre-
sentation of energy EðqÞ versus quasimomentum q]. Left: The
lattice is accelerated, (partial) tunneling occurs. Right: The
acceleration is then suddenly reduced and the lattice depth
increased so as to freeze the instantaneous populations in the
lowest two bands; finally, further acceleration is used to separate,
and measure, these populations in momentum space. (b) Experi-
mental results for V0 ¼ 1Erec and F0 ¼ 0:383 (aLZ ¼
13:52 ms�2), giving TB ¼ 0:826 ms. The solid and dashed lines
are a numerical simulation of our experimental protocol and an
exponential decay curve for our system’s parameters, respec-
tively.
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While the experimental protocol described above mea-
sures the LZ tunneling probability in the adiabatic basis, it
is possible to make analogous measurements in the dia-
batic basis of the unperturbed free-particle wave functions
(plane waves with a quadratic energy-momentum disper-
sion relation) by abruptly switching off the lattice and the
dipole trap after the first acceleration step (with the BEC
initially prepared in the adiabatic basis, which, far away
from the band gap, is almost equal to the diabatic basis). In
this case, after a time-of-flight the number of atoms in the
v ¼ 0 and v ¼ 2prec=M velocity classes are measured and
from these the survival probability in the v ¼ 0 velocity
class is calculated. The inset of Fig. 2(a) (filled triangles)
shows such a measurement. Again, a step around t ¼
0:5TB is clearly seen, as well as strong oscillations for t >

0:5TB. While weaker oscillations are also seen in the
adiabatic basis [see Fig. 2(a) with V0 ¼ 2:3Erec], they are
much stronger and visible for a wider range of parameters
in the diabatic basis [6]. These oscillations, also known as
the Stokes phenomenon, are due to the discrepancy be-
tween the diabatic basis in which we measure the tunneling
event and the ideal superadiabatic basis in which they are
absent and the tunneling time is minimized [12]. They
were also predicted for LZ tunneling in atomic Rydberg
states [21] and experimentally observed in a wave-optical
two-level system [22].
The widths �tLZ of the steps shown in Fig. 2(a) reflect

the ‘‘jump time’’ for LZ tunneling �tLZ ¼ �vLZ=aLZ dur-
ing which the probability of finding the atoms in the lowest
energy band goes from Paðt ¼ 0Þ ¼ 1 to its asymptotic LZ
value 1� PLZ. Vitanov [6] defines the jump time in the
adiabatic basis as

�
jump
a ¼ Paðt ¼ þ1Þ

P0
aðt ¼ t0Þ ; (5)

where P0
aðt ¼ t0Þ denotes the time derivative of the tunnel-

ing probability PaðtÞ evaluated at the crossing point of Ha.

A sigmoidal function for PaðtÞ leads to �jump
a ¼ 4�tLZ. For

large values of �, which is the regime of our experiments,
the theoretical jump time is given by

�jump
a � TB

�E

4Erec

: (6)

This time, which coincides with the LZ traversal time of
[10], is taken by the force to transfer the barrier energy to
the system. It increases with �E and decreases with F0.

From our sigmoidal fits we retrieve �jump
a =TB �

0:15–0:35 (corresponding to absolute jump times between
50 and 200 �s), whereas the theoretical values for our
experimental parameters are in the region of 0.1–0.15.
This discrepancy is due to the fact that in our experiment
the condensate does not occupy one single quasimomen-
tum but is represented by a momentum distribution of
width �p=pB * 0:1 due to the finite number of lattice
sites (around 50) it occupies and the effects of atom-atom
interactions.
In order to test the dependence of �tLZ on �p we

created initial distributions of different widths using a
dynamical instability [23]. The condensate was loaded
into a lattice moving at a finite velocity corresponding to
quasimomentum q ¼ �0:3pB and held there for up to
3 ms. During this time the dynamical instability associated
with the negative effective mass at that q led to an increase
in �p. After this preparatory stage, the LZ dynamics was
measured as described above and �tLZ was extracted [see
Fig. 3(a)]. As expected,�tLZ increases with�p [Fig. 3(b)].
This was confirmed by a numerical integration of the
Schrödinger equation in which�p was varied by changing
the initial trap frequency. The simulation also showed that
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FIG. 2. (a) LZ survival probability in the adiabatic basis for a
fixed force F0 ¼ 1:197 (aLZ ¼ 42:25 ms�2) and different lattice
depths (filled squares: V0 ¼ 2:3Erec; open circles: V0 ¼ 1:8Erec;
open squares: V0 ¼ 1Erec; filled circles: V0 ¼ 0:6Erec). The
dashed lines are sigmoid fits to the experimental data. Inset:
Survival probability in both the adiabatic (open squares) and
diabatic (filled triangles) bases for V0 ¼ 1Erec and F0 ¼ 1:197.
(b) Step height h as a function of the inverse adiabaticity
parameter 1=� for varying lattice depth and F0 ¼ 1:197 (open
symbols), and for varying force with fixed V0 ¼ 1:8Erec (filled
symbols). The dashed line is the prediction of Eq. (3) for the LZ
tunneling probability.
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for �p ! 0, �tLZ remains finite and in that limit directly
reflects the jump time given by Eq. (6).

In summary, we have measured the LZ dynamics of
matter waves in an accelerated optical lattice in the adia-
batic and diabatic bases. In both bases the steplike behavior
as well as oscillations of the survival probability were
clearly seen and agree with theoretical predictions. In
future investigations one could reduce the initial momen-
tum width, which currently limits the resolution of our
experiment, by using, e.g., appropriate trap geometries or
by controlling the nonlinearity through Feshbach reso-
nances. This would enable a comparison with theoretical
results related to the minimum time for a single LZ cross-
ing limited by fundamental quantum (or wave, see [22])
mechanical properties [24]. Also, clearer observations of
the short-time oscillations as seen in Fig. 2(a) should be

possible in this way. Our method can also be used to study
multiple LZ crossings, e.g., in order to observe Stückelberg
oscillations.
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FIG. 3. LZ transition for different momentum widths of the
condensate. (a) Survival probability for �p=pB ¼ 0:2 (filled
squares) and �p=pB ¼ 0:6 (open squares). The solid and dashed
lines are the results of a numerical simulation and of a sigmoid
fit, respectively. (b) Step width �tLZ as a function of �p. The
open symbols (connected by a solid line for clarity) are the
results of a numerical simulation.
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