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The application of the hyperspherical adiabatic expansion to describe three-body scattering states

suffers from the problem of very slow convergence. Contrary to what happens for bound states, a huge

number of hyper-radial equations has to be solved, and even if done, the extraction of the scattering

amplitude is problematic. In this Letter we show how to obtain accurate scattering phase shifts using the

hyperspherical adiabatic expansion. To this aim two integral relations, derived from the Kohn variational

principle, are used. The convergence of this procedure is as fast as for bound states.
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Introduction.—Few-body collisions involving either nu-
clei, atoms, or molecules are frequently investigated. To
this aim different methods are at present available depend-
ing on the interaction under study. In nuclear physics,
collisions involving three or four nucleons have been ex-
tensively studied within the Faddeev method or the hyper-
spherical harmonic (HH) method [1–3]. These two
methods show sufficient flexibility to treat the complexities
of the nucleon-nucleon interaction. A different problem
arises when the interaction presents a hard core, as in the
case of the atom-atom interaction, or in systems with A >
4. In the first case, the Faddeev equations have been
extended to deal with a hard core repulsion [4] whereas
the hyperspherical adiabatic (HA) expansion method
proved to be a very efficient tool [5]. In nuclear systems
with A > 4 tentatives to describe scattering states have
recently appeared [6,7].

Here we are interested in describing a 1þ 2 collision
using the HA expansion method. For bound states the
convergence of the HA expansion has proved to be very
fast. However, the convergence of the expansion slows
down significantly in the case of low energy scattering
states [8]. On the other hand, this method is extensively
used to describe few-atom systems in the ultracold regime
(see Refs. [9,10] and references therein) and, in particular,
atom-dimer collisions. Therefore, a detailed study of its
convergence properties is timely.

In this Letter we show for the first time how the HA
expansion method can be used to describe elastic scattering
with a pattern of convergence similar to a bound state
calculation. This is achieved in a simple but very general
way in which a second order estimate of the phase shift is
extracted from the wave function using two integral rela-
tions derived from the Kohn variational principle (KVP)
[11]. The number of HA terms needed to obtain completely
stable results depends very little on the structure of the
potential, exactly as for bound state calculations. The in-
tegral relations are governed by the wave function in the

interaction region. Therefore the stability of the results
with a low number of HA basis elements is a clear indica-
tion that inclusion of more terms in the expansion only
modifies the wave function outside the interaction range.
As derived from the KVP, the integral relations are

general and their application is not limited to three par-
ticles. They can be applied to an A-body system in which
the scattering wave function is known in the interaction
region. Examples of applications are given below.
Continuum states in the hyperspherical adiabatic expan-

sion method.—The details of the HA method can be found
in [5,8]. For simplicity, here we restrict ourselves to three
equal mass particles with total angular momentum L ¼ 0
and with only s waves involved.

From the Jacobi coordinates Xi ¼ ðrj � rkÞ=
ffiffiffi
2

p
and

Yi ¼ ðrj þ rk � 2riÞ=
ffiffiffi
6

p
, one defines the hyperspherical

variables, ½�;�i� � ½�;�i; �i�, with �i ¼ X̂i � Ŷi, Xi ¼
� cos�i, and Yi ¼ � sin�i, where fi; j; kg is a cyclic per-
mutation of f1; 2; 3g, and frig are the coordinates of the
three particles. In hyperspherical coordinates the
Hamiltonian operator H takes the form

H ¼ � @
2

2m
T� þ @

2

2m�2
G2 þ Vð�;�Þ

¼ � @
2

2m
T� þH�; (1)

where T� is the hyper-radial operator, G2 is the grand-

angular operator, Vð�;�Þ ¼ P
iVðXiÞ is the potential en-

ergy, and m is set equal to the mass of the particles. The
wave function� for a specific bound or continuum state is
expanded as

�ST� ¼ X1
�¼1

u�ð�Þ�ST�
� ð�;�Þ; (2)

where S, T, and � are the total spin, total isospin, and
parity. For simplicity, we shall suppress from now on the
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corresponding labels in � and f��g. The HA basis ele-
ments f��g are the eigenfunctions of H� at fixed values
of �. Their corresponding eigenvalues, U�ð�Þ, are the
adiabatic potentials, which enter in the coupled set of
differential equations (see Refs. [5,10])

�
� @

2

2m
T�þU�ð�Þ� @
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2m
Q��ð�Þ�E

�
u�ð�Þ

� @
2

2m

XNA

�0��

�
Q��0 ð�ÞþP��0 ð�Þ

�
5

�
þ2

d

d�

��
u�0 ð�Þ¼0 (3)

with NA the number of adiabatic channels included in the
calculation, E the three-body energy, and from which the
hyper-radial functions u�ð�Þ are obtained. At energies
below the two-body breakup E2B and � ! 1, the total
scattering wave function behaves asymptotically as [8]

� ! �dðrÞ
�
sinðk��Þffiffiffiffiffi

k�
p

�
þ tan��

cosðk��Þffiffiffiffiffi
k�

p
�

�
jSTi: (4)

However, as we will show below, even increasing NA as
much as possible, the computed value of �� does not

converge to the expected one. This can be understood
from the fact that the asymptotic structure of the system
can be constructed in terms of the functions

FST ¼ X3
i¼1

FSTðiÞ ¼
X3
i¼1

�dðXiÞ
sin½kyyi�ffiffiffiffiffi

ky
p

yi
jSTi

GST ¼ X3
i¼1

GSTðiÞ ¼
X3
i¼1

�dðXiÞ
cos½kyyi�ffiffiffiffiffi

ky
p

yi
jSTi;

(5)

where particle i is assumed to hit the bound state made by j

and k, and where yi ¼
ffiffi
6

p
2 Yi is the distance between i and

the j-k center of mass, and k2y ¼ 2
3 k

2
�. The asymptotic

configuration in the limit yi ! 1 is then

� ! FST þ tan�GST: (6)

When � ! 1, the distance Xi is limited by �d and the
approximate relation kyyi � k�� holds. However, the ex-

act equivalence between kyyi and k�� is not matched for

any finite value of � and, accordingly, the boundary con-
dition of Eq. (4) is equivalent to the one in (6) only at � �
1 and NA ! 1. As a consequence, �� converges ex-

tremely slowly to � by increasing the number of adiabatic
states. This situation has reduced the applicability of the
method.

Second order integral relations.—From the above dis-
cussion and observing that in the expansion of the func-
tions FST and GST in terms of HA basis elements [8], the
two terms of Eq. (4) represent the first term of that expan-
sion, respectively, the wave function � can be expressed
asymptotically as

� ¼ XNA

�

u�ð�Þ��ð�;�Þ ! AFST þ BGST: (7)

In order to extract the coefficients A and B ( tan� ¼ B=A),
we derive from the KVP two integral relations accurate up
to second order. The KVP states that the following func-
tional is stationary:

½tan��2nd ¼ tan�� hð1=AÞ�jLjð1=AÞ�i (8)

with respect to variations of the wave function, whereL ¼
2ffiffi
3

p m
@
2 ðH � EÞ. The scattering wave function can be sche-

matically written as ð1=AÞ� ¼ �c þ FST þ tan� ~GST . The

function ~GST , representing a regularization of the function
GST , introduces a nonlinear parameter � to eliminate a
term proportional to �ðyiÞ originated by ðH � EÞGST , and
�c is the part of the wave function inside the interaction
region constructed in terms of some parameters (e.g., a
linear combination of basis elements). It verifies �c ! 0
asymptotically. The other parameter in � is tan�. In the
present work we have used

~GST ¼ X
i

�dðXiÞ
cos½kyyi�ffiffiffiffiffi

ky
p

yi
ð1� e��yiÞjSTi: (9)

The variation of the functional (8) with respect to the
parameters in �c and with respect to tan� leads to

h�cjLj�i ¼ 0; h ~GSTjLj�i ¼ 0: (10)

These two equations can be interpreted in two different
ways. In the case in which � is explicitly separated in the

three terms �c, FST , ~GST , the above equations are used to

determine�c and the first order estimate of tan� ( tan�1st).
Accordingly, � is constructed after solving these equa-
tions. A different case arises when � is known (for ex-
ample using the HA expansion) but the separation in the
three terms is not explicitly known. For this case the two

equations can be used to define of �c and tan�1st .
Introducing Eq. (10) into the functional, the second

order estimate of tan� is obtained

½tan��2nd ¼ ðtan�Þ1st � hFSTjLjð1=AÞ�i; (11)

with A ¼ h�jLj ~GSTi. This is a consequence of the general
relation A ¼ h�jLj ~GSTi � h ~GSTjLj�i (obtained by trans-
forming the Laplacian term in a surface integral), the

normalization relation hFSTjLj ~GSTi � h ~GSTjLjFSTi ¼ 1
and the last equation derived from the KVP in Eq. (10).
The same relation can be used to obtain a first order
estimate for the coefficient B as

B1st ¼ hFSTjLj�i � h�jLjFSTi: (12)

After multiplying Eq. (11) by A one gets that B2nd ¼ B1st �
hFSTjLj�i, which by use of Eq. (12) leads to a second
order integral relation for B and, accordingly, a second
order estimate for tan�. These results are the main con-
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clusions of this Letter and can be summarized as

B2nd ¼ �h�jLjFSTi
A ¼ h�jLj ~GSTi

�
tan�2nd ¼ B2nd=A: (13)

The relations of Eq. (13) are equivalent to the KVP and are
useful in the cases in which � is known but its explicit
asymptotic form in terms of the functions FST and GST is
not. This is the case, for example, when� is obtained from
the solution of the HA equations. The integrands in the
integral relations of Eq. (13) go rapidly to zero as � ! 1
since FST and ~GST are solutions of L in that limit.
Therefore, an accurate knowledge of � outside the range
of interaction is not needed. In the present case, the explicit
form of the integrals in Eq. (13) are

B2nd ¼�C
Z
d��5d��ð�;�ÞVðXiÞ½FSTðjÞþFSTðkÞ�

A¼C
Z
d��5d��ð�;�ÞVðXiÞ½GSTðjÞþGSTðkÞ�þI�;

(15)

where C ¼ 2
ffiffiffi
3

p
m=@2 and I� is a (short-range) integral

including all terms depending on �. Let us note that the
last integral is largely independent of � provided that the
regularization is performed inside the interaction region
and� tends to the exact wave function. The dependence of
tan� on � is studied below. We have found that values of

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mjE2Bj=@2p

are a convenient choice.
The integral relations, as given above, are a general-

ization of the relation used in the two-body case [12].

However, an attempt to identify the single term B2nd ¼
tan�B as a corrected phase shift fails as we show below.
The validity of Eq. (13) is not limited to the three-body
case and to wave functions obtained using the HA method.
It can be applied to any wave function � which verifies
ðH � EÞ� ¼ 0 in the interaction region without any ex-
plicit indication of its asymptotic behavior. An example is
represented by the solution of ðH � EÞ� ¼ 0 in a box in
which � is set to zero at some distance. Using Eq. (13) a
second order estimate of a phase shift can be obtained
studying its convergence in terms of the dimension of the
box.

Results.—As a first application we consider a three-
body system of identical spinless bosons interacting
through a central, s wave, Gaussian potential VðrÞ ¼
V0 exp�ðr=r0Þ2, with V0 ¼ �51:5 MeV and r0 ¼
1:6 fm. Though this potential is unrealistic, it will serve
to the purpose of testing the method due to the very
extended dimer wave function (E2B ¼ 0:397743 MeV
and @

2=m ¼ 41:4696 MeV fm2). Such three-body system
has two L ¼ 0 bound states with separation energies

Eð0Þ
3B ¼ �9:7574 MeV and Eð1Þ

3B ¼ �0:4816 MeV, respec-
tively. In Table I we show the convergence of these two
states in terms of the HH and HA expansions. From the
table we observe the fast convergence of the HA even in the

case of the shallow state Eð1Þ
3B. We can conclude that 10 HA

basis states are sufficient to describe simultaneously both
bound states.
We now show results for the L ¼ 0 phase shift at E ¼

�0:1 MeV. Equation (3) has been solved up to � ¼
500 fm with the boundary condition of Eq. (4) for increas-
ing values ofNA. Because of the large extension of the P��0

andQ��0 coupling terms, the higher NA the larger the value
of � at which the asymptotic form of u1 is verified. For
example, using only one HA basis state (only one hyper-
radial equation has to be solved), u1 reaches its asymptotic
form at � � 100 fm. When 40 HA terms are used, this

happens beyond 500 fm. The results for ��, �B ¼
arctanðB2ndÞ, �2nd ¼ arctanðB2nd=AÞ (for different values
of �), and A, are given in Table II up to 40 HA basis
functions.
We observe that �� and �B converge very slowly to a

value that, by extrapolation, can be estimated in the inter-
val 72.8�–72.9� as NA ! 1. This is at variance with the

value �2nd ¼ 73:18�, which shows a rate of convergence
extremely fast and a large stability with �, as NA increases.

The calculation of �2nd requires the knowledge of the radial
functions up to values of � not larger than 70–80 fm, for

TABLE I. Convergence of the bound state energies (in MeV)
as a function of the number N of HH and HA basis functions.

Eð0Þ
3B Eð1Þ

3B

N HH HA N HH HA

1 �9:2062 �9:7347 1 � � � �0:4781
2 �9:5810 �9:7552 4 � � � �0:4815
3 �9:7247 �9:7573 10 �0:2323 �0:4816
4 �9:7424 �9:7574 30 �0:4635 �0:4816
6 �9:7558 �9:7574 50 �0:4790 �0:4816
8 �9:7571 �9:7574 70 �0:4811 �0:4816
10 �9:7574 �9:7574 100 �0:4815 �0:4816

TABLE II. Patterns of convergence for ��, �B ¼ arctanB, �2nd

(in degrees) and A, in terms of NA for E ¼ �0:1 MeV. The
values of A have been calculated using � ¼ 0:25.

NA �� �B A �2nd ¼ arctanðB2nd=AÞ
� ¼ 0:1 � ¼ 0:25 � ¼ 0:5 � ¼ 1:0

1 65.23 67.85 0.607 75.895 76.212 75.479 74.727

4 71.65 71.89 0.909 73.385 73.446 73.450 73.429

8 72.32 72.42 0.951 73.222 73.237 73.245 73.259

12 72.56 72.62 0.965 73.190 73.194 73.196 73.203

16 72.67 72.71 0.971 73.182 73.183 73.185 73.189

20 72.72 72.76 0.974 73.180 73.180 73.182 73.186

24 72.75 72.79 0.976 73.179 73.179 73.180 73.184

28 72.77 72.81 0.977 73.179 73.179 73.180 73.184

32 72.78 72.82 0.978 73.179 73.179 73.180 73.184

36 72.79 72.82 0.978 73.179 73.179 73.180 73.183

40 72.79 72.83 0.978 73.179 73.179 73.180 73.183
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which a relatively small number of HA terms is enough.
Conversely, �� and �B would converge to the correct phase

shift only after imposing the boundary condition to the
wave function at � ¼ 1, for which in principle infinitely
many HA basis terms are needed. For comparison, a con-
verged value of 73.180� is obtained for the phase shift
using the HH expansion method with 120 basis elements.
This result is in complete agreement with the one obtained
with Eq. (13). The different patterns of convergence can be
clearly seen on Fig. 1.

Reference [8] reports calculations at three different
energies using the MT-III potential [13], which has a
yukawian repulsion at short distances, in the S ¼ 3=2, T ¼
0 state. When the HH expansion is used, more than 120
basis states have to be included to reach convergence in the
phase shifts. In Table III we show the corresponding results
when using Eq. (13). In the last row the results from
Ref. [8] using the HH expansion are given for comparison.
The results obtained with the integral relations are in
complete agreement with those obtained using the HH
expansion and show a very fast pattern of convergence.

Conclusions.—We have derived two integral relations
from the KVP which are accurate up to second order. Their
ratio, the phase shift, converges in terms of the HA basis
elements as fast as the binding energy in a bound state
calculation. The fast convergence has been shown for
different types of interactions. We would like to stress
the general validity of Eq. (13). Its application will be
very useful in the case in which � is known in the inter-
action region but the exact construction of its asymptotic
form is difficult. The HA expansion has been applied in
Refs. [10,14] to compute phase shifts in a 1þ 2 and a 2þ
2 helium atom collisions. Accordingly, Eq. (13) can be
used directly to obtain a second order estimate of the phase
shifts. In Ref. [6], n� � scattering has been studied using
Quantum Monte Carlo techniques. The wave function of

the system was obtained solving ðH � EÞ� ¼ 0 in a box.
The knowledge of � in the interaction region allows for a
direct application of Eq. (13) also in this case. To be
noticed that in the case in which more than one elastic
channel is open, the coefficients A and B of Eq. (13)
correspond to matrices

B2nd

ij ¼ �h�ijLjFji
Aij ¼ h�ijLj ~Gji

�
R2nd ¼ A�1B2nd : (14)

with R2nd the second order estimate of the scattering matrix
whose eigenvalues are the phase shifts and the indices (i, j)
indicate the different asymptotic configurations accessible
at the specific energy under consideration. Finally, we
would like to mention the possibility of using Eq. (13) to
describe a 1þ 2 elastic collision with charged particles
using a screened Coulomb potential and free asymptotic
conditions.
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FIG. 1. Convergence of ��, �B, and �2nd as a function of the
number NA of HA basis functions. The converged value obtained
from the HH expansion is shown for comparison.

TABLE III. Convergence of �2nd ¼ arctanðB2nd=AÞ (in de-
grees) at three incident energies with the MT-III potential.

NA 0.2 MeV 1.0 MeV 2.0 MeV

4 �28:277 �55:875 �71:507
8 �28:290 �55:865 �71:475

12 �28:293 �55:864 �71:473
16 �28:294 �55:863 �71:473
20 �28:294 �55:863 �71:473
HH �28:294 �55:863 �71:474
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