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We present exact results on the nonequilibrium current fluctuations for 2 quantum dots in series

throughout a crossover from non-Fermi liquid to Fermi liquid behavior described by the 2 impurity Kondo

model. The result corresponds to resonant tunneling of carriers of charge 2e for a critical interimpurity

coupling. At low energy scales, the result can be understood from a Fermi liquid approach that we develop

and use to also study nonequilibrium transport in an alternative double dot realization of the 2 impurity

Kondo model under current experimental study.
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Introduction.—Measurements of nonequilibrium shot
noise in current fluctuations in electronic devices [1] has
became a practical tool to probe strongly correlated sys-
tems with elementary excitations whose charge, e�, possi-
bly differs from the electron charge e, the prominent
examples being the observation of the Cooper-pair charge
e� ¼ 2e in normal metal-superconductor junctions [2], or
fractional charges in quantum Hall samples [3]. Remark-
ably, many-body physics with unusual emergent excita-
tions arises even when the interactions occur only at a
single point, e.g., in an impurity in a metal, or in a nano-
scale quantum dot (QD) connecting few leads. Theoretical
studies of various quantum impurity problems encountered
the notion of non-Fermi liquid (NFL) behavior, with in-
elastic scattering of an incoming electron into multiple
particle and hole states even at zero temperature T [4]. It
is of general interest to study shot noise in QD systems
showing such elusive NFL behavior.

Nontrivial effective charges emerge even for quantum
impurity problems showing regular Fermi liquid (FL) be-
havior. For example in the basic single impurity Kondo
model, realized by a single QD coupled to leads, studies of
shot noise [5] lead to a prediction of a universal fractional
charge [6] e� ¼ 5e=3 in the low temperature regime which
was detected experimentally [7], reflecting a combination
of single electron and two-electron backscattering. A gen-
eralization for a variety of Kondo models was achieved
recently [8]. The crossover which is typically addressed in
experiment [9] is very rarely understood theoretically. In
this Letter we find that a simple and yet unusual ‘‘non-
interactinglike’’ picture for transport of particles with ef-
fective charge e� ¼ 2e emerges along an entire crossover
from NFL to FL behavior occurring in double QDs in
series [10–12] exhibiting the physics of the 2-impurity
Kondo model (2IKM).

The simplest 2IKM consists of two impurity spins (SL,
SR), coupled to two channels of conduction electrons
and interacting with each other through an exchange
interaction K; see Fig. 1. After the standard ‘‘unfolding
transformation’’ [13], reducing the two spin-1=2 channels
to four chiral Dirac fermions, c i�ðxÞ, i ¼ 1, 2 ¼ L, R,

� ¼" , # , x 2 f�1;1g, the Hamiltonian becomes H ¼
H0 þHK where H0 ¼

P
j;�

R
dxc y

j�i@xc j� and

HK ¼ JLðc y
L ~�c LÞ � ~SL þ JRðc y

R ~�c RÞ � ~SR þ K ~SL � ~SR:

(1)

~�ð ~�Þ is a vector of Pauli matrices acting in spin (channel)
space. For this model a NFL quantum critical point (QCP)
was found at K ¼ Kc � TK [14] separating a local singlet
FL phase at K >Kc from a Kondo screened FL phase at
K <Kc (see Fig. 1). However, more realistic models con-
taining interchannel tunneling,

HPS ¼ VLRc
y
Lc R þ H:c:; (2)

where H.c. stands for Hermitian conjugate, [or, HPS ¼
ReVLRðc y�1c Þ � ImVLRðc y�2c Þ], with implicit sum
over spin and channel indices, do not show a critical point
[15,16]. The reason for this is that Eq. (2) results in a
relevant perturbation with dimension 1=2 at the QCP
[17], leading to an energy scale T� / TKj�VLRj2 þ ðK �
KcÞ2=TK which is finite even at K ¼ Kc, below which an
effective FL theory takes over. Here � is the density of

K-Kc

|VLR|

weak coupling

(JL, JR grow)
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RL
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FIG. 1 (color online). Phase diagram: as temperature is re-
duced the system flows from the weak coupling limit (T � TK,
empty dot) to the vicinity of the QCP (T� � T � TK, filled blue
dot) and finally to the FL line of fixed points (T � T�, dashed
line).
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states of the conduction electrons. This crossover from
NFL to FL behavior is reflected in the conductance of
double QDs [10–12,18], and in particular geometries,
e.g., the series geometry, we were able to calculate it
exactly [12]. However this information is not sufficient to
uncover the nature of the transport.

In this Letter we study the full counting statistics [19,20]
(FCS) for charge transfer through a series double QD along
the full NFL to FL crossover. In general, charge is trans-
ferred in units of e or 2e. We note that this feature occurs
also along the Kondo crossover in a single QD in the
unrealistic Toulouse limit [21], as was first realized in the
case of finite magnetic field where it can become energeti-
cally favorable to tunnel electron pairs through the impu-
rity rather than single electrons [22]. A peculiar situation
occurs in the double QD atK ! Kc, where 2e becomes the
basic unit of charge along the full crossover. This striking
behavior is not captured in a slave-boson mean field cal-
culation [23].

We also derive a local Fermi liquid Hamiltonian govern-
ing the physics below T�. Using an enhanced understand-
ing of this crossover we go beyond previous works [24–26]
in determining all coupling constants in this effective
Hamiltonian and obtain a universal theory depending
only on an energy scale, T�, similar to Nozières FL theory
(FLT) for the single impurity problem [27], and on the new
FL boundary condition associated with the ratio jK �
Kcj=ð�jVLRjTKÞ. This approach helps us to understand
the charge 2e carriers.

In the geometry proposed by Zaránd et al. [18], where
transport proceeds between two leads connected via one
QD side coupled to a second QD coupled to another lead,
exact results on the crossover are not available. None-
theless, we use our FLT to calculate universal nonequilib-
rium transport and noise properties at low energies when
the NFL critical behavior is destabilized by a nonzero K �
Kc. Our predictions can be probed experimentally [28].

Full counting statistics.—We will obtain the full charge
transfer distribution in a series double QD tuned to the
2IKM regime, along the crossover from NFL to FL behav-
ior, using the formulation of Ref. [12].

In terms of Abelian bosonization one can write the
original free fermion theory with HK ! 0 and HPS ! 0

in terms of 8 chiral Majorana fermions �A
j , �

A
1 ¼ c y

A
þc Affiffi
2

p ,

�A
2 ¼ c y

A
�c Affiffi
2

p
i

, associated with the real (j ¼ 1) and imagi-

nary (j ¼ 2) parts of the charge, spin, flavor and spin-flavor
fermions (A ¼ c, s, f, X); for a definition of these fermi-
ons, see Ref. [12]. Then the free Hamiltonian isH0½f�0g� ¼
i
2

P
8
j¼1

R
dx�0

j@x�
0
j, where f�0g ¼ f�X

2 ; �
f
1 ; �

f
2 ; �

X
1 ; �

c
1; �

c
2;

�s
1; �

s
2g. The Fermi operator c y

f ðc fÞ increases (decreases)
Y ¼ ðNL � NRÞ=2 by 1, Ni being the total fermion number
in lead i ¼ L, R.

Turning onHK, the QCP is obtained at K ¼ Kc from the
free case by a change in boundary condition occurring only
for the first Majorana fermion, �1ð0�Þ ¼ ��1ð0þÞ. For

energies � TK, the leading terms in the Hamiltonian de-
scribing deviations K � Kc as well as finite VLR can be
written [12] in a new basis f�g, where �1ðxÞ ¼ �0

1ðxÞsgnðxÞ
and �i ¼ �0

i, (i ¼ 2; . . . ; 8), as HQCP ¼ H0½f�g� þ �HQCP

where [29]

�HQCP ¼ i
X2
j¼1

�j�jð0Þa: (3)

Here a is a local Majorana fermion, a2 ¼ 1=2, and

�1 ¼ c1
K � Kcffiffiffiffiffiffi

TK

p ; �2 ¼ c2
ffiffiffiffiffiffi
TK

p j�VLRj; (4)

where c1 and c2 are constant factors of order 1. Those
couplings determine two energy scales �2

1, �
2
2, and the total

crossover scale is �2 ¼ �2
1 þ �2

2 ¼ T�. The operators in
�HQCP have scaling dimension 1=2; hence, they destabilize
the QCP; below the crossover scale T� the system flows to
FL fixed points whose nature depend on the ratio �1=�2.
By definition the FCS is obtained from the cumulant

generating function �ð�Þ for the probability distribution
function PðQÞ to transfer Q units of charge during the
waiting time T (which is sent to infinity), �ð�Þ ¼P

Qe
iQ�PðQÞ. The cumulants h�nQi can be found from

h�nQi ¼ ð�iÞn @n

@�n ln�ð�Þj�¼0. In fact, due to a formal

equivalence of our nonequilibrium formulation and that
of Schiller and Hershfield [22] for a single QD tuned to the
Toulouse limit, we can borrow directly the results of
Komnik and Gogolin for the FCS for that model [21];
translating between the parameters of the two models in
the limit T� � TK, we obtain

ln�ð�Þ
T

¼
Z 1

�1
d	

4

ln

�
1þ X2

n¼�2

Anð	Þðei�n � 1Þ
�
: (5)

Here A1ð	Þ ¼ 2�2
1
�2
2

4	2þ�4 ½nFð1� nLÞ þ nRð1� nFÞ�, A2ð	Þ ¼
�4
2

4	2þ�4 nLð1� nRÞ, A�n ¼ AnjL$R, nF ¼ ð1þ e	=TÞ�1,

nL;R ¼ nFð	� eVÞ, and V is the source-drain voltage.

The presence of one particle as well as two-particle trans-
port processes in our model is apparent from the � depen-
dence of the two terms /ðe	i� � 1Þ and /ðe	2i� � 1Þ in
Eq. (5), respectively. At K ¼ Kc, giving A1 ¼ A�1 ¼ 0,
Eq. (5) is equivalent to the formula for the FCS of spinless
noninteracting fermions of charge 2e transmitted though a
resonant level of width �T�, namely, the noninteracting
formula [19,21] is obtained from Eq. (5) by the replace-
ment 2� ! �, nL;R ! nFð	� eV=2Þ and adding an over-

all factor of 2.
Intuitive picture.—Unfortunately, in NFLs a simple pic-

ture in terms of the original electrons is absent. This makes
the interpretation of the charge 2e in our problem in terms
of pairing of the bare electrons incorrect in general, except
in the FL regime, as discussed below.
We may think of the impurity spins as having 2 degen-

erate states when K ¼ Kc: singlet and triplet. The impurity
entropy of S ¼ ð1=2Þ ln2 [30] implies that this degeneracy
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is only partially lifted by the Kondo interactions with
electrons in the leads. We may roughly represent these
2 states by an effective S ¼ 1=2 spin (to avoid the formal
notion of a Majorana fermion).

We consider two different transport processes: (i) single
electron tunneling with amplitude VLR, Eq. (2), which is
not sensitive to the effective spin, and leads to a constant
and small current �ðe2=hÞð�VLRÞ2V; (ii) charge tunne-
ling accompanied with flipping the effective spin. This is

indeed Eq. (3) with j¼2, �HQCPjK¼Kc
¼ iffiffi

2
p �2ðc y

f þc fÞa,
which is formally generated from the basic tunneling
Eq. (2) to first order in VLR. The operator a flips the
effective spin. Most importantly, this spin flip tunneling
(SFT) intimately influences the QCP, since it eventually
removes the entropy associated with it, as represented by
the jVLRj axis in Fig. 1. Therefore, the essential features of
the current close to the QCP arise from the SFT. The charge
tunneling operator in the SFT is the collective flavor exci-

tation �f
1 ¼ ðc y

f þ c fÞ=
ffiffiffi
2

p
, where c y

f ðc fÞ moves charge

eð�eÞ from right to left lead.
The doubling of charge may be understood by noting the

analogy between the SFT operator �HQCPjK¼Kc
and a non-

interacting model where a resonant level d is coupled to the

leads �H ¼ �0ðc y
L þ c y

RÞdþ H:c: [22]. The two models
are essentially identical. The difference is that the fermions
appearing in �H change Y½¼ ðNL � NRÞ=2� by 	1=2 (1
electron tunnels onto or off of the resonant level), while
the fermions appearing in �HQCPjK¼Kc

change Y by 	1

(charge e tunneling). Since the noninteracting resonant
level model results in current fluctuations and FCS with
basic charge e, this analogy explains the origin of resonant
tunneling of charge 2e in terms of resonant scattering of
flavor collective ‘‘particle’’ excitations by the effective
spin at the QCP.

Shot noise and effective charge.—The two-particle pro-
cesses can be probed by looking simultaneously at the
current I ¼ eh�1Qi=T and noise S ¼ 2e2h�2Qi=T .
Equation (5) gives the T ¼ V ¼ 0 conductance G ¼ dI

dV ¼
g0t where t ¼ �2

2=�
2 ¼ j�VLRj2

j�VLRj2þðc1=c2Þ2ðK�Kc
TK

Þ2 and g0 ¼
2e2=h (or setting @ ¼ 1 as in the rest of the Letter, g0 ¼
e2=
). Using Eq. (5), in Fig. 2 we plot shot noise SðVÞ
along the crossover from FL (eV � T�) to NFL (eV �
T�) regimes for various values of K � Kc (determined by
t). Experiments [7] extract effective charges by fitting shot
noise measurements with the formula

Sfit ¼ 2e�g0
Z V

0
tðV 0Þ½1� tðV 0Þ�dV0; (6)

where tðVÞ is extracted from nonlinear conductance mea-
surements tðVÞ ¼ 1

g0
dI
dV , tð0Þ ¼ t, and e� is the effective

charge. For K � Kc (t < 1), Sfit with e� ¼ e gives a good
fit for sufficiently small V; see inset of Fig. 2. When jK �
Kcj � TKj�VLRj (t � 1), this fit with e� ¼ e becomes
reasonably good along the full crossover; see curve with
t ¼ 0:15 in Fig. 2. For K ! Kc (t ! 1) the fit with e� ¼ e

works only for an extremely small range eV �ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T�=TK

p jK � Kcj ! 0, and, remarkably, the full curve
fits with Sfit with e� ¼ 2e; see curve with t ¼ 0:99.
Fermi liquid theory.—The line of FL fixed points

(dashed line in Fig. 1) should have a simpler effective
interacting theory written essentially in terms of the origi-
nal fermions c j�. The derivation will be published else-

where; the result is HFL
0 ¼R

dx�yi@x� (indices summed),

and

�HFL ¼ cos2ð2�ÞO11 þ sin2ð2�ÞO22 þ sinð4�ÞO12

2T� jx¼0;

O11 ¼ 16

3
ð ~J2L þ ~J2RÞ � 4ð ~JL þ ~JRÞ2;

O22 ¼ ðJL � JRÞ2 � :�y
L�	���

y
L��R�	���R� þ H:c::;

O12 ¼ i
X

j¼L;R

:�y
L�	���

y
R��j�	���j�:þ H:c:; (7)

where Jj ¼ :�y
j�j:, ~Jj ¼ �y

j
~�
2 �j (j ¼ L, R) and 	�� is

the antisymmetric tensor. Here �j� are single particle

scattering states incoming from lead (channel) j with
spin � ¼ 	1 (x > 0 corresponds to the incoming part in
our left moving convention),

�j�ðxÞ ¼ ðxÞc j�ðxÞ þ
X
j0
ð�xÞsjj0 ½��c j0�ðxÞ; (8)

with s½��jj0 ¼ cosð2�Þ�jj0 � i� sinð2�Þð�1Þjj0 . We also

give a formula for the FL phase shift,

2� ¼ argð�1 þ i�2Þ: (9)

This universal FL Hamiltonian follows from a large sym-
metry emerging close to the QCP [17], and is valid for
energies � T� � TK, j�VLRj � 1, and jK � Kcj � TK.
The emergence of the basic transport charge 2e for K ¼

Kc (� ¼ 
=4) in the series geometry follows at low en-
ergies �T� because in this case �HFL in Eq. (7) is domi-
nated by O22; this operator produces scattering of two �L
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FIG. 2 (color online). Shot noise versus voltage for several
values of K � Kc (determined by t) at T ¼ 0. Data are fitted in
dashed lines using Eq. (6). The inset blows up the FL region,
with fits of e� ¼ e for t ¼ 0:15, 0.5, 0.8 and e� ¼ 2e for t ¼ 0:99
(K ! Kc, red curve).
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fermions to two �R fermions and vice versa. Since at � ¼

=4 the transmission is t ¼ 1, we refer to this as an
inelastic 2e backscattering; see Fig. 3. Away from K ¼
Kc the operator O12 in �HFL adds also single electron
processes.

To calculate transport properties for the Zaránd et al.
double QD geometry [18] which is under current experi-
mental study [28], it is necessary to calculate the single
particle Green’s function in the 2IKM. Because the elec-
tron field cannot be expressed in terms of the Majorana
fermions, we have not been able to calculate this through-
out the crossover, results being necessarily restricted to the
vicinity of the NFL or FL critical points corresponding to
an interimpurity singlet or Kondo screened behavior. Here
we consider this system at K slightly different than Kc in
the FL regimes, T, eV � T�, where our FLT can be
applied, ignoring particle-hole breaking (VLR ¼ 0). The
conductance of this system can be expanded as Gsinglet ¼
g0½sin2�1 þ �1fðT=T�Þ2 þ �ðeV=T�Þ2g�, and Gscreened ¼
g0½cos2�1 � �1fðT=T�Þ2 þ �0ðeV=T�Þ2g�, where �1 is a
small phase shift associated with marginal potential scat-
tering operators. We assume parity symmetry of the device.
Using Eq. (7), after a lengthy but straightforward calcula-
tion, we determine universal relations: �1 ¼ �1 ¼ Oð1Þ,
� ¼ �0 ¼ 9=10
2. We also calculate the shot noise in the
FL regime, and define effective charges ðe�=eÞ ¼ S=2I for
the local singlet FL regime (K >Kc), and ðe�=eÞ0 ¼
S=2ðg0V � IÞ in the Kondo screened phase (K <Kc),
defined in the limit �1 ! 0. Using Eq. (7) we obtain
ðe�=eÞ ¼ ðe�=eÞ0 ¼ 11=9. Our predictions should be con-
trasted with the measurements on single QDs with � ¼
3=2
2 [31] and e�=e ¼ 5=3 [7].

Recently it was shown [32] that the rate of entanglement
production at a point contact is determined by the FCS. Our
results suggest the exciting possibility of experimentally
measuring entanglement near a NFL critical point.
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