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We present an analytic strong-coupling approach to the phase diagram and elementary excitations of the

Jaynes-Cummings-Hubbard model describing a superfluid-insulator transition of polaritons in an array of

coupled QED cavities. In the Mott phase, we find four modes corresponding to particle or hole excitations

with lower and upper polaritons, respectively. Simple formulas are derived for the dispersion and spectral

weights within a strong-coupling random-phase approximation (RPA). The phase boundary is calculated

beyond RPA by including the leading correction due to quantum fluctuations.
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The recent experimental success in engineering strong
interactions between photons and atoms in high-quality
microcavities opens up the possibility to use light-matter
systems as quantum simulators for many-body physics [1].
A prominent example is the superfluid-insulator transition
of polaritons in an array of coupled QED cavities as
described by the Jaynes-Cummings-Hubbard model
(JCHM) [2,3]. The competition between strong atom-
photon coupling, giving rise to an effective photon repul-
sion (localization), and the photon hopping between cav-
ities (delocalization) leads to a quantum phase diagram
featuring Mott lobes [2] reminiscent of those of ultracold
atoms in optical lattices as described by the seminal Bose-
Hubbard model (BHM) [4]. The JCHM can be imple-
mented, e.g., using single atoms [5], excitons [6], or
Cooper pairs [7]. The striking advantage of using coupled
microcavities, with respect to their optical lattice counter-
parts, is their individual accessibility.

Although the coupling between QED cavities has not yet
been implemented experimentally, the JCHM stimulated
exciting theoretical work over the last three years, suggest-
ing that polariton systems can be used to simulate various
strongly correlated and exotic phases [8–13]. While such
exploratory work is justified in its own right, still very little
is known about the fundamental excitations of the JCHM.
The phase boundary of the superfluid-insulator transition
has been calculated using mean-field decoupling [2,8],
Monte Carlo [14,15] and variational cluster approaches
[16,17] in two and three dimensions. Only two papers
have explored the fundamental excitations of the system
[15,17]. All of these results, even on a mean-field level,
rely on more or less heavy numerical computation due to
the intricate composite nature of polaritons. To the best of
our knowledge, no analytic results are available neither for
the phase boundary nor for the excitations of the JCHM.

In this Letter, we show that a linked-cluster expansion
pioneered for the Fermi-Hubbard model (FHM) [18] and
recently applied to the BHM [19] can be used to obtain
simple, analytic formulas for the phase diagram as well as
excitation spectra for arbitrary temperatures, detuning pa-
rameter and lattice geometries. We find two new modes,

which have been overlooked in previous numerical ap-
proaches and discuss dispersion and spectral weights
within strong-coupling RPA. Furthermore, we study the
effect of quantum fluctuations on the phase boundary of the
superfluid-insulator transition. In two dimensions, our re-
sults agree well with recent Monte Carlo calculations. In
three dimensions, where numerical data are currently not
available, we present a quantitatively accurate calculation
of the quantum phase diagram.
The Hamiltonian of the JCHM is given by

H ¼ X
i

hJCi ��N � J
X
hiji

ayi aj; (1)

where hJCi denotes the local Jaynes-Cummings Hamil-

tonian hJCi ¼!ca
y
i aiþ!x�

þ
i �

�
i þgð�þ

i aiþ��
i a

y
i Þ with

cavity index i, photon creation (annihilation) operators

aðyÞi and atomic raising (lowering) operators �þð�Þ
i . The

cavity mode frequency is !c, the two atomic levels are
separated by the energy !x and the atom-photon coupling
is given by g (we set @ ¼ 1). The total number of excita-

tions, i.e., polaritonsN ¼ P
iðayi ai þ �þ

i �
�
i Þ, is conserved

and fixed by the chemical potential�. The third term in (1)
describes the delocalization of photons over the whole
lattice due to hopping between nearest neighbor cavities
with amplitude J. It competes with an effective on-site
repulsion between photons mediated by the atom-photon
coupling. This competition leads to Mott lobes in the
quantum phase diagram [2].
A rough estimate for the size of these Mott lobes can be

obtained by calculating perturbatively the cost of adding or
removing a polariton. In the atomic limit (J ¼ 0) the
eigenstates of the Hamiltonian (1) are the dressed polariton
states labeled by the polariton number n and upper or lower
branch index � ¼ �. For n > 0 they can be written as a
superposition of a Fock state with n photons plus atomic
ground state jn; gi and (n� 1) photons with the atom in its
excited state jðn� 1Þ; ei,

jnþi ¼ sin�njn; gi þ cos�njðn� 1Þ; ei;
jn�i ¼ cos�njn; gi � sin�njðn� 1Þ; ei; (2)
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with the angle tan�n ¼ 2g
ffiffiffi
n

p
=ð�þ 2�nÞ, �n ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2nþ �2=4
p

, and the detuning parameter � ¼ !c �!x.
The corresponding eigenvalues are

��n ¼ �ð��!cÞn� �=2þ ��n; � ¼ �: (3)

The zero-polariton state j0�i ¼ j0; gi is a special case
with ��0 ¼ 0. Upper and lower polariton energies are sepa-
rated by the Rabi splitting �n ¼ 2�n. For the calculation
of the quantum phase diagram at small tunneling J � gwe
can neglect the upper polariton branch. In a straightforward
first-order degenerate perturbation theory in J, the chemi-
cal potentials at which the addition or removal of a lower
polariton costs no energy is given by (we assume a hyper-
cubic lattice in D dimensions)

�p �!c ¼ �n � �nþ1 � 2DJðf��
nþ1Þ2 þOðJ2=gÞ;

�h �!c ¼ �n�1 � �n þ 2DJðf��
n Þ2 þOðJ2=gÞ; (4)

the matrix elements f��n ¼ hn�jayjðn� 1Þ�i can be easily
expressed in terms of the angle �n and are given by f��n ¼
ð ffiffiffi

n
p þ ��

ffiffiffiffiffiffiffiffiffiffiffiffi
n� 1

p Þ=2 for n > 1 (f��1 ¼ 1=
ffiffiffi
2

p
) at zero de-

tuning (� ¼ 0). The two equations in (4) define the upper
and lower phase boundary in the quantum phase diagram in
Fig. 1 for small values of the hopping parameter J=g. The
point where the two lines meet (i.e., �p ¼ �h) is Jc �
0:1g for n ¼ 1 and represents an upper limit for the size of
the first Mott lobe. By going to higher order in the pertur-
bative expansion for the ground-state energy and subse-
quent resummation of the strong-coupling series, one could
in principle determine the exact location of the phase
boundary. This has recently been achieved for the BHM
[20,21].

In this Letter, we will follow a different approach and
study directly the photonic Matsubara Green’s function
Gijð�; �0Þ ¼ �hT aið�Þ �ajð�0Þi with the time-ordering op-

erator T and the Heisenberg operator �ajð�0Þ ¼
eH�0ayj e�H�0 . A suitable method for the evaluation of the

Matsubara Green’s function is a linked-cluster expansion
in terms of local cumulants originally developed by
Metzner et al. [18] for the FHM. Each term of the
linked-cluster expansion can be written diagrammatically
in terms of n-particle cumulants represented by 2n-leg
vertices and tunneling matrix elements symbolized by
propagating lines connecting two vertices. The strong-
coupling expansion provided by the linked-cluster method
is applicable to the JCHM because (i) the atomic-limit
Hamiltonian is local, (ii) anomalous averages of the photon
operator with respect to the eigenstates of the local
Hamiltonian vanish, i.e., hn�jðayÞkjn�i ¼ 0 for k 2 N
(since a single photon excitation always changes the polar-
iton number).
In the atomic limit, the Green’s function is given by

G0ijð�; �0Þ ¼ G0ið�; �0Þ�ij ¼ �hT aið�Þ �aið�0Þi0�ij, where

the average h. . .i0 is taken with respect to the eigenstates
of the local Hamiltonian, i.e., the first two terms in (1). For
a spatially homogeneous system we can drop the site index
i and straightforwardly calculate G0ð�; �0Þ. After a Fourier
transformation we obtain

G0ð!mÞ ¼
X
n;�;�

e�	��n

Z

�
z
��
nþ1

�
��
nþ1 � i!m

� z
��
n

�
��
n � i!m

�
(5)

with the partition function Z ¼ P
n�e

�	��n and bosonic
Matsubara frequencies !m ¼ 2
m=	 (	 ¼ 1=ðkBTÞ
with temperature T and Boltzmann constant kB). In (5)
we defined z

��
n ¼ ðf��

n Þ2 and �
��
n ¼ �

�
n � ��n�1. We sum

an infinite set of diagrams by calculating the irreducible
part of the Green’s function Kðk; !mÞ which is connected
to the full Green’s function via the equation Gðk; !mÞ ¼
Kðk; !mÞ=½1� JðkÞKðk; !mÞ� with the lattice dispersion
JðkÞ ¼ 2J

P
D
i¼1 cosk � ai (ai denotes a lattice vector). To

second order in J we get

(6)

with Qð!mÞ¼
R	
0 d�d�1d�2C

ð2Þð�10;�2�ÞG0ð�2;�1Þei!m�.

The quantum fluctuation correction Qð!mÞ involves the

two-particle cumulant Cð2Þð�10; �2�Þ, which is related to

the local two-particle Green’s function Gð2Þ
0 ð�10; �2�Þ ¼

hT aið�1Þaið0Þ �aið�2Þ �aið�Þi0 via Cð2Þð�10; �2�Þ ¼
Gð2Þ

0 ð�10; �2�Þ �G0ð�1; �2ÞG0ð0; �Þ �G0ð�1; �ÞG0ð0; �2Þ.
The algebraic expressions for the two-particle cumulant
and the quantum correction Qð!nÞ are lengthy and will be
given elsewhere [22].
The inverse Green’s function tells us immediately about

the phase boundary G�1ð0; 0ÞjJcð�Þ ¼ 0 and the dispersion
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FIG. 1 (color online). Quantum phase diagram for a hyper-
cubic lattice in D ¼ 2 (left figure) and D ¼ 3 (right figure). We
show two Mott lobes for n ¼ 1, 2 at zero detuning � ¼ 0. We
compare first-order perturbation theory (dashed), RPA (dot-
dashed) and quantum fluctuations (solid) with recent results
from a quantum Monte Carlo (solid dots) [14] and variational
cluster (stars) [17] approach. The two crosses (left figure) con-
nected by the dotted line mark the parameter values used in
Fig. 2. The insets show the critical hopping strength Jc=g at the
tip of the lobe as a function of the detuning � for n ¼ 1 and
n ¼ 2 calculated within strong-coupling RPA in D ¼ 3 dimen-
sions.
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relation G�1ðk; i!m ! !þ i0þÞ ¼ 0. We introduce the
strong-coupling self-energy �ðk; !mÞ via Gðk; !mÞ�1 ¼
G0ð!mÞ�1 � �ðk; !mÞ and obtain from (6) to second order
�ðk; !mÞ ¼ JðkÞ þ 2DJ2Qð!mÞ=G0ð!mÞ. The first term
on the right-hand side is usually called the strong-coupling
random-phase approximation (RPA) [23], whereas the sec-
ond term denotes the leading correction due to quantum
fluctuations. The RPA corresponds to a summation of all
self-avoiding walks (chain diagrams) through the lattice.
The leading quantum correction includes in addition all
one-time forward or backward hopping processes (bubble
diagrams) between two neighbored sites. Although we
have carried out our calculations at finite temperature, we
will only consider the T ¼ 0 case from now on. The effect
of thermal fluctuations will be studied elsewhere [22].

At the quantum phase transition the energy of long-
wavelength fluctuations vanishes and we get an explicit
expression for the critical hopping strength

J�1
c ¼ DG0ð0Þ½1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Qð0Þ=ðDG3

0ð0ÞÞ
q

�: (7)

If we ignore the second term under the square root in (7)
we obtain the RPA phase boundary 1=Jc ¼ 2DG0ð0Þ
shown as a dashed-dotted line in Fig. 1. We have checked
that this analytic result agrees exactly with the phase
boundary obtained from a numerical decoupling mean-
field approach as presented in [2,8]. We can go beyond
this result by including quantum fluctuations in (7) leading
to an improved phase boundary (solid line in Fig. 1). In two
dimensions our result agrees well with recent Monte Carlo
calculations [14] and confirms the smoothness of the lobes
found in [14] (different from [17], where a variational
cluster approach has been used). There is still a small
deviation near the tip of the lobe, where quantum correc-
tions are most important. In the right panel of Fig. 1 we
present quantitatively accurate results for the phase dia-
gram in D ¼ 3. Note, that the strong-coupling expansion
becomes more accurate in higher dimensions.

We now turn to the discussion of excitations, which we
calculate within RPA. An analytic continuation of the
Matsubara Green’s function via i!n ! !þ i0þ yields
the retarded real-time Green’s function. Its poles and res-
idues yield the dispersion relations and mode strengths of
the fundamental excitations. In general, we obtain four
poles, the conventional (Bose-Hubbard-like) lower polar-
iton particle (hole) modes !�

ðp;hÞ and two modes !þ
ðp;hÞ

which correspond to an upper polariton particle (hole)
excitation (conversion modes). The presence of the latter
signals a clear deviation from the usual Bose-Hubbard-like
physics and is due to the composite nature of polaritons.
The conversion modes exist already in the atomic limit and
were also found in a recent Monte Carlo study [15], but
have been overlooked by a variational cluster approach
[17]. One reason might be that their bandwidth and
strengths are very small as compared to the conventional
modes. We can thus set their dispersion relations!þ

ðp;hÞ and

mode strength sþðp;hÞ approximately equal to!þ
ðp;hÞ � �þ

ðp;hÞ
and sþðp;hÞ � zþðp;hÞ with the atomic-limit particle (hole) gaps

��
p � ���

nþ1ð��
h � ���

n Þ and mode strengths z�p �
z��nþ1ðz�h � �z��

n Þ, respectively. If we neglect their contri-
bution to the one-particle cumulant (5), we can derive
simple analytic formulas for the dispersion relations of
the conventional modes

!�
ðp;hÞ ¼ ð�þ � JðkÞzþ ��Þ=2 (8)

with � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2� þ JðkÞ2z2þ � 2JðkÞz���

q
and the abbre-

viations �� ¼ ��
p � ��

h and z� ¼ z�p � z�h . The strength
of the modes are given by

s�ðp;hÞ ¼
zþ!�

ðp;hÞ � z�ðp;hÞ�
�
ðh;pÞ � z�ðh;pÞ�

�
ðp;hÞ

!�
ðp;hÞ �!�

ðh;pÞ
: (9)

The dispersions in (8) are plotted in Fig. 2 deep inside the
Mott regime and at the tip of the lobe with n ¼ 1. The
energy needed for a conventional excitation is an order of
magnitude smaller than for a conversion excitation. The
strengths of the conventional modes s�ðp;hÞ grow with in-

creasing tunneling strength (and diverge at the tip of the
lobe similar to what is found for the BHM [24]) while sþðp;hÞ
stays approximately constant. If we are only interested in
low energy excitations we can thus indeed neglect contri-
butions from upper polaritons.
Deep inside the Mott insulator particle and hole excita-

tions are gapped. If the phase boundary is approached away
from the tip of the lobe, either the particle (upper phase
boundary) or the hole (lower phase boundary) gap vanishes
linearly �� jJ � Jcj. At the phase boundary the disper-
sion relation remains quadratic !� k2. The situation
changes at the tip of the lobe, where particle and hole
gaps vanish simultaneously with a square-root behavior

�� jJ � Jcj1=2, while their dispersions become linear
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FIG. 2 (color online). Particle or hole dispersion of the con-
ventional modes !�

ðp;hÞ for D ¼ 2 and n ¼ 1 at zero detuning

� ¼ 0. Left figure: Deep inside the Mott insulator (see cross in
Fig. 1) for ð��!cÞ=g ¼ �0:78 and J=g ¼ 0:01. The inset
shows the conventional modes !�

ðp;hÞ together with the conver-

sion mode !þ
p . Right figure: At the phase boundary (see cross in

Fig. 1) for ð��!cÞ=g ¼ �0:78 and J=g ¼ 0:04. The inset
shows the bandwidth W of the conventional particle mode !�

p

as a function of detuning � at the tip of the lobe.
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!� k (see Fig. 2). This indicates a special transition at the
tip of the lobe, where also the effective masses vanish (see
Fig. 3), reminiscent of an emergent particle-hole symme-
try. In the opposite limit J ! 0 the effective masses ap-
proach infinity as m�

ðp;hÞ ¼ �1=ð2Jz�ðp;hÞÞ. The behavior of
the dispersion at the critical point J ¼ Jc in the long-
wavelength limit k ! 0 determines the dynamical critical
exponent z defined by !� ��z � kz with the diverging
correlation length �� jJ � Jcj�� and its associated criti-
cal exponent �. From the discussion above, we conclude
that the dynamical critical exponent has the generic value
z ¼ 2 everywhere in the phase diagram except for the
special multicritical point at the tip of the lobe where it
changes to z ¼ 1. Very recently this result has been con-
firmed using an effective action approach [25]. At k ¼ 0
the gap vanishes as �� jJ � Jcjz� when the tunneling
strength approaches its critical value Jc. Thus we have � ¼
1=2 everywhere in the phase diagram. We conclude that at
least on a mean-field RPA level, the JCHM has the same
critical exponents as the BHM [4] and is thus in the same
universality class. The results in (8) and (9) can be seen as a
generalization of the expressions for the dispersion rela-
tions and mode strengths of the BHM [26]. The usual BHM
physics is retrieved if one ignores the upper polariton mode
in (5) and sets f�n � fn ¼

ffiffiffi
n

p
and ��n � �n ¼ ðU=2Þnðn�

1Þ ��n.
The physics of the JCHM is richer due to the presence of

the experimentally important detuning parameter �.
Indeed, detuning from the resonance � ¼ 0 allows to
fine-tune the effective repulsion between photons and drive
the system from the Mott into the superfluid state [2,14]. In
Fig. 1 we show that the critical hopping strength decreases
as a function of the detuning parameter � independent of
its sign for n ¼ 2. This is generally true for Mott lobes with
more than one polariton n > 1. However, the n ¼ 1 Mott
lobe becomes smaller for negative and larger for positive
detuning. This distinct behavior is due the special nature of
hole excitations from the n ¼ 1 polariton state to the zero-

polariton state, which has an energy ��0 ¼ 0 independent

of detuning.
At the end we comment on the experimental verifiability

of our results. A setup based on quantum dot excitons
embedded in a photonic crystal was discussed in [27].
After proper initialization of a Mott insulator ground state,
the dispersion relations of the excitations could be mea-
sured using transmission spectroscopy [28].
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FIG. 3 (color online). Particle or hole gaps ��
ðp;hÞ (left figure)

and effective masses m�
ðp;hÞ (right figure) of the conventional

modes forD ¼ 2 and n ¼ 1 at zero detuning � ¼ 0 as a function
of the tunneling strength J=g for ð��!cÞ=g ¼ �0:78 (along
the dotted line in Fig. 1).
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