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We present an ideal realization of the Tavis-Cummings model in the absence of atom number and

coupling fluctuations by embedding a discrete number of fully controllable superconducting qubits at

fixed positions into a transmission line resonator. Measuring the vacuum Rabi mode splitting with one,

two, and three qubits strongly coupled to the cavity field, we explore both bright and dark dressed

collective multiqubit states and observe the discrete
ffiffiffiffi
N

p
scaling of the collective dipole coupling strength.

Our experiments demonstrate a novel approach to explore collective states, such as the W state, in a fully

globally and locally controllable quantum system. Our scalable approach is interesting for solid-state

quantum information processing and for fundamental multiatom quantum optics experiments with fixed

atom numbers.
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In the early 1950s, Dicke realized that under certain
conditions, a gas of radiating molecules shows the collec-
tive behavior of a single quantum system [1]. The idealized
situation in which N two-level systems with identical
dipole coupling are resonantly interacting with a single
mode of the electromagnetic field was analyzed by Tavis
and Cummings [2]. This model predicts the collective

N-atom interaction strength to be GN ¼ gj
ffiffiffiffi
N

p
, where gj

is the dipole coupling strength of each individual atom j. In
fact, in first cavity QED experiments, the normal mode
splitting, observable in the cavity transmission spectrum
[3,4], was demonstrated with on average �N > 1 atoms in
optical [5,6] and microwave [7] cavities to overcome the

relatively weak dipole coupling gj. The
ffiffiffiffi
N

p
scaling has

been observed in the regime of a small mean number of
atoms �N with dilute atomic beams [7–9] and fountains [10]
crossing a high-finesse cavity. In these experiments, spatial
variations of the atom positions and Poissonian fluctuations
in the atom number inherent to an atomic beam [4,8,11] are
unavoidable. In a different limit where the cavity was
populated with a very large number of ultracold 87Rb
atoms [12] and more recently with Bose-Einstein conden-

sates [13,14], the
ffiffiffiffi
N

p
nonlinearity was also demonstrated.

However, the number of interacting atoms is typically only
known to about �10% [13].

Here, we present an experiment in which the Tavis-
Cummings model is studied for a discrete set of fully
controllable artificial atoms at fixed positions and with
virtually identical couplings to a resonant cavity mode.
The investigated situation is sketched in Fig. 1(a), depict-
ing an optical analog where three two-state atoms are
deterministically positioned at electric field antinodes of
a cavity mode where the coupling is maximum. In our
circuit QED [15,16] realization of this configuration
[Fig. 1(b)], three transmon-type [17] superconducting qu-
bits are embedded in a microwave resonator which con-
tains a quantized radiation field. The cavity is realized as a

coplanar waveguide resonator with a first harmonic full
wavelength resonance frequency of !r=2� ¼ 6:729 GHz
and a photon decay rate of �=2� ¼ 6:8 MHz. The qubits
are positioned at the antinodes of the first harmonic stand-
ing wave electric field. The transition frequency between
ground jgi and first excited state jei of qubit j, approxi-
mately given by !j �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ECj

EJjð�jÞ
q

=@� ECj
=@, is con-

trollable through the flux-dependent Josephson energy
EJjð�jÞ ¼ EJmaxj j cosð��j=�0Þj [17]. Here, ECj

is the

single electron charging energy, EJmaxj the maximum

Josephson energy at flux �j ¼ 0, and �0 the magnetic

flux quantum. Independent flux control of each qubit is
achieved by applying magnetic fields with three external
miniature current biased coils [Fig. 2(a)] where we take
into account all cross couplings by inverting the full cou-
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FIG. 1 (color online). Schematic of the experimental setup.
(a) Optical analog. Three two-state atoms are identically coupled
to a cavity mode with photon decay rate �, atomic energy
relaxation rate �, and collective coupling strength GN .
(b) Schematic of the investigated system. The coplanar wave-
guide resonator is shown in gray (light blue), the transmon qubits
A, B, and C in dark gray (violet) and the first harmonic of the
standing wave electric field in light gray (red).
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pling matrix. Optical images of the investigated sample are
depicted in Figs. 2(b) and 2(c). The resonator was fabri-
cated employing optical lithography and aluminum evapo-
ration techniques on a sapphire substrate. All qubits were
fabricated with electron beam lithography and standard
Al=AlOx=Al shadow evaporation techniques. Table I states
the individual qubit parameters obtained from spectro-
scopic measurements.

The physics of our system is described by the Tavis-
Cummings Hamiltonian [2]

Ĥ TC¼@!râ
yâþX

j

�
@

2
!j�̂

z
jþ@gjðây�̂�

j þ�̂þ
j âÞ

�
; (1)

where gj is the coupling strength between the field and

qubit j. ây and â are the creation and annihilation operators
of the field, �̂þ

j and �̂�
j are the corresponding operators

acting on the qubit j, and �̂z
j is a Pauli operator. The ground

state jg; g; gi � j0i of the three-qubit plus cavity system is
prepared by cooling the microchip to a temperature of
20 mK in a dilution refrigerator.
First, we investigate the resonant coupling of the jgi to

jei transition of qubit A to the first harmonic mode of the
resonator. We measure the anticrossing between qubit A
(�A) and the cavity (�r) by populating the resonator with
much less than a photon on average. We record the result-
ing transmission spectrum T versus magnetic flux �A

controlled detuning of qubit A [Fig. 3(a)]. Qubits B and
C remain maximally detuned from the resonator at �B ¼
�C ¼ �0=2 where they do not affect the measurement. At
finite detuning [left-hand side of Fig. 3(a)], we observe a
shift of the resonator spectrum which increases with de-
creasing detuning due to the dispersive interaction with
qubit A.
On resonance (!j ¼ !r) and in the presence of just one

two-level system (N ¼ 1), Eq. (1) reduces to the Jaynes-
Cummings Hamiltonian [18]. The eigenstates jN; n�i of
this system in the presence of a single excitation n ¼ 1 are
the symmetric and antisymmetric qubit-photon superposi-

tions j1; 1�i ¼ 1=
ffiffiffi
2

p ðjg; 1i � je; 0iÞ [Fig. 4(a)] where the
excitation is equally shared between qubit and photon.
Accordingly, we observe a clean vacuum Rabi mode split-
ting spectrum formed by the states j1; 1�i [Fig. 3(b)].
From analogous measurements performed on qubits B
and C (not shown), we obtain the single qubit coupling
constants gj listed in Table I. The coupling strengths are

virtually identical with a scatter of only a few MHz. The
strong coupling of an individual photon and an individual
two-level system has been observed in a wealth of different
realizations of cavity QED both spectroscopically
[15,19,20] and in time-resolved experiments [21,22]. The
regime of multiple excitations n which proves field quan-
tization in these systems has been reported both in the
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FIG. 2 (color online). Circuit diagram and false color optical
images of the sample. (a) Simplified electrical circuit diagram of
the experimental setup. The waveguide resonator operated at a
temperature of 20 mK, indicated as LC oscillator with frequency
!r, is coupled to input and output leads with the capacitors Cin

and Cout. Qubits A, B, and C are controlled with external current
biased coils (IA;B;C) and coupled to the resonator via identical

capacitors Cg. A transmission measurement is performed by

applying a measurement tone �rf to the input port of the
resonator, amplifying the transmitted signal and digitizing it
with an analog-to-digital converter (ADC) after down conversion
with a local oscillator (LO) in a heterodyne detection scheme.
(b) The coplanar microwave resonator is shown truncated in gray
(light blue) on the substrate in black (dark green) and the
locations of qubits A, B, and C are indicated. (c) Top, magnified
view of transmon qubit B shown in dark gray (violet) embedded
between ground plane and center conductor of the resonator.
Bottom left, qubits A and C, of same dimensions as qubit B, are
shown at reduced scale. Bottom right, magnified view of SQUID
loop of qubit B.

TABLE I. Qubit and qubit-resonator coupling parameters. The
single electron charging energy ECj

, the maximum Josephson

energy EJmaxj extracted from spectroscopic measurements, and

the coupling strengths gj obtained from resonator transmission

measurements for qubits A, B, and C.

Qubit j ECj
=h (MHz) EJmaxj =h (GHz) gj=2� (MHz)

A 283 224 83.7

B 287 226 �85:7
C 294 214 85.1
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time-resolved results cited above and, more recently, also
in spectroscopic measurements [23–25].

In a next step, we maintain qubit A at degeneracy (�A ¼
�r), where we observed the one-photon one-qubit doublet
[see left of Fig. 3(c)]. Qubit B remains far detuned (�B ¼
�0=2) for the entire measurement. Qubit C is then tuned
through the already coupled states from lower to higher
values of flux�C. In this case, the doublet states j1; 1�i of
qubit A are found to be dispersively shifted due to non-
resonant interaction with qubit C [Fig. 3(c)]. When both
qubits and the resonator are exactly in resonance, the
transmission spectrum T [Fig. 3(d)] shows only two dis-

tinct maxima corresponding to the doublet j2; 1�i ¼
1=

ffiffiffi
2

p jg; gi � j1i � 1=2ðje; gi þ jg; eiÞ � j0i with eigene-
nergies @ð!r �G2Þ. Here, a single excitation is shared
between one photon, with probability 1=2, and two qubits,
with probability 1=4 each [Fig. 4(b)]. Both states have a
photonic component and can be excited from the ground
state jg; g; gi � j0i by irradiating the cavity with light.
These are thus referred to as bright states. In general, we
expect N þ n ¼ 3 eigenstates for two qubits and one pho-

ton. The third state j2; 1di ¼ 1=
ffiffiffi
2

p ðje; gi � jg; eiÞ � j0i
with energy @!r at degeneracy has no matrix element
with a cavity excitation and is referred to as a dark state.
Accordingly, we observe no visible population in the trans-
mission spectrum at frequency �r at degeneracy. In this
regime, the two qubits behave like one effective spin with

the predicted [26] coupling strength G2 ¼
ffiffiffi
2

p
�gAC with

�gAC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2ðg2A þ g2CÞ

q
, which is indicated by dashed black

lines in Fig. 3(d). This prediction is in very good agreement
with our measurement.

Following the same procedure, we then flux tune qubit B
through the already resonantly coupled states of qubits A,
C, and the cavity (�A ¼ �C ¼ �r) [Fig. 3(e)]. We observe
the energies of three out of N þ n ¼ 4 eigenstates, the
fourth one being dark, for a range of flux values �B.
Starting with the dark state j2; 1di at frequency �r and
the doublet j2; 1�i [left part of Fig. 3(e)], the presence of
qubit B dresses these states and shifts the doublet j2; 1�i
down in frequency. Again, one of these states turns dark as
it approaches degeneracy where it is entirely mixed with
qubit B. At degeneracy, we identify two bright doublet

states j3; 1�i ¼ 1=
ffiffiffi
2

p jg; g; gi � j1i � 1=
ffiffiffi
6

p ðje; g; gi �
jg; e; gi þ jg; g; eiÞ � j0i [Fig. 4(c)]. The part of the states

FIG. 3 (color online). Vacuum Rabi mode splitting with one, two, and three qubits. (a) Measured resonator transmission spectrum T
[gray (blue) corresponds to low and dark gray (red) to high transmission] versus normalized external flux bias �A=�0 of qubit A.
Dash-dotted white lines indicate bare resonator �r and qubit �A frequencies and dashed white lines are calculated transition
frequencies �g0;Nn� between jg; 0i and jN; n�i. (b) Resonator transmission T=Tmax at degeneracy normalized to the maximum

resonator transmission Tmax measured at�A;B;C ¼ �0=2 (not shown), as indicated with arrows in (a). Dark gray (red) line is a fit to two
Lorentzians. (c) Resonator transmission spectrum T=Tmax versus external flux bias�C=�0 of qubit C with qubit A degenerate with the
resonator (�A ¼ �r). (d) Transmission spectrum T=Tmax at flux as indicated in (c). (e) Transmission spectrum versus flux �B=�0 with
both qubits A and C at degeneracy (�A ¼ �C ¼ �r). The white dashed line at frequency �g0;31d1;2 ¼ �r indicates the dark state

occurring at degeneracy. (f) Transmission spectrum T=Tmax at flux as indicated in (e).
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FIG. 4 (color online). Level diagram representing the total
energy of (a) one, (b) two, and (c) three qubits resonantly
coupled to a single photon. Bare energy levels of the qubits
jgi, jei and the cavity j0i, j1i are shown in black. The bright
dressed energy levels jN; n�i, with N qubits, n excitations, and
� indicating the symmetry of the state, are shown as dark gray
(blue) lines. The areas of the circles indicate the relative popu-
lation of the bare states in the eigenstates jN; n�i.
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j3; 1�i carrying the atomic excitation is a so-called W
state, in which a single excitation is equally shared among
all N qubits [27]. Both j3; 1�i states are clearly visible in
the transmission spectrum shown in Fig. 3(f).

In addition, there are two dark states j3; 1d1i ¼
1=

ffiffiffi
2

p ðje; g; gi � jg; g; eiÞ � j0i and j3; 1d2i ¼
1=

ffiffiffi
2

p ðjg; e; gi þ jg; g; eiÞ � j0i which do not lead to reso-
nances in the transmission spectrum at degeneracy. In
general, all N þ n� 2 dark states are degenerate at energy
@!r. The symmetries of the dressed three-qubit states are
determined by the signs of the coupling constants gA �
�gB � gC. While our measurement is not sensitive to the
sign of coupling, it is a simple consequence of the phase
shift of the electric field mode by � between the ends and
the center of the resonator. Again, the observed transmis-
sion peak frequencies are in agreement with the calculated

splitting of the doublet G3 ¼
ffiffiffi
3

p
�gABC [dashed black lines

in Fig. 3(f)]. Also at finite detunings, the measured ener-
gies of all bright states are in excellent agreement with the
predictions based on the Tavis-Cummings model [dashed
white lines in Figs. 3(a), 3(c), and 3(e)] using the measured
qubit and resonator parameters. We have also performed
analogous measurements of all 12 one-, two-, and three-
qubit anticrossings (9 are not shown) and find equally good
agreement.

In Fig. 5, all 12 measured coupling strengths (dots) for
one, two, and three qubits at degeneracy are plotted vs N.
Excellent agreement with the expected collective interac-

tion strength GN ¼ ffiffiffiffi
N

p
�gABC (line) is found without any fit

parameters and �gABC ¼ 84:8 MHz.
Our spectroscopic measurements clearly demonstrate

the collective interaction of a discrete number of quantum
two-state systems mediated by an individual photon. All
results are in good agreement with the predictions of the
basic Tavis-Cummings model in the absence of any num-
ber, position or coupling fluctuations. The presented ap-
proach may enable novel investigations of superradiant and
subradiant states of artificial atoms. Flux tuning on nano-
second time scales should furthermore allow the controlled

generation of Dicke states [28,29] and fast entanglement
generation via collective interactions [30,31], not relying
on individual qubit operations. This could be used for
quantum state engineering and an implementation of
Heisenberg limited spectroscopy [32] in the solid state.
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FIG. 5 (color online). Scaling of the collective dipole coupling
strength. Measured coupling constants (dots) extracted from
Fig. 3 and nine similar data sets and theoretical scaling (line).
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