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The electric dipole moment of atomic 199Hg induced by the nuclear Schiff moment and the tensor-

pseudotensor electron-nucleus interactions are calculated. For this, we develop and employ a novel

method based on the relativistic coupled-cluster theory. The results of our theoretical calculations,

combined with the latest experimental result of the 199Hg electric dipole moment, provide new bounds

on the T reversal or CP violation parameters �QCD, the tensor-pseudotensor coupling constant CT , and

(~du � ~dd). This is the most accurate calculation of these parameters to date. We highlight the crucial role

of electron correlation effects in their interplay with the P, T violating interactions. Our results

demonstrate substantial changes in the results of earlier calculations of these parameters which can be

attributed to the more accurate inclusion of important correlation effects.
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The existence of a nonzero permanent electric dipole
moment (EDM) of a nondegenerate physical system is
a signature of the simultaneous violations of parity (P)
and time-reversal (T) symmetries [1]. T violation implies
the combined charge conjugation (C) and P violation
(CP violation) via the CPT theorem [2]. The origin of
CP violation is still not well understood. It has so far
been observed only in the K [3] and B [4,5] mesons, and
the results are essentially in agreement with the predictions
of Kobayashi and Maskawa in the framework of the stan-
dard model [6]. However, this model cannot explain the
matter-antimatter asymmetry [7] in the Universe for which
CP violation is a prerequisite [8]. In addition, it predicts
atomic EDMs several orders of magnitude below their
current limits [9–11]. Indeed, atomic EDMs are excellent
probes of physics beyond the standard model [9–11], and
they provide important insights into a rich variety of
CP violations—leptonic, semileptonic, and hadronic sec-
tors. Experimental searches are underway for the EDMs of
paramagnetic (open-shell) and diamagnetic (closed-shell)
atoms [12,13]. The results of the experiments can be
combined with those of sophisticated atomic many-body
calculations to determine various CP violating coupling
constants at the atomic level. These can ultimately be
related to the CP violation parameters at the elementary
particle level [14]. The EDM of diamagnetic atoms arises
predominantly from the nuclear Schiff moment (NSM)
and/or the electron-nucleon tensor-pseudotensor interac-
tions [14]. These in turn arise from the nucleon-nucleon
interactions or the EDM of nucleons, which originate due
to the quark-quark interactions, EDMs, and chromo-EDMs
of quarks at the elementary particle level.

In this Letter, we concentrate only on the EDM of
mercury (199Hg), a closed-shell atom. The present limits

on important CP violation parameters like �QCD for strong

interactions and the chromo-EDMs of quarks have been
obtained from the EDM of 199Hg [12], which is the most
accurate of all the data from atomic EDMs to date. The
focus of our work in this Letter is to improve the current
limits on the coupling constants associated with the
electron-nucleon tensor-pseudotensor (T-PT) interaction
(CT) and the NSMðSÞ. A nonzero value of CT implies
physics beyond the standard model. The dependence of
the T-PT interactions and the NSM on the nuclear spin
makes closed-shell atoms, in particular, those having non-
zero nuclear spin, the best candidates to measure EDMs
sensitive to the nuclear sector.
For heavy atoms like mercury, it is customary to use the

Dirac-Coulomb Hamiltonian, HDC, in atomic units

HDC ¼ X
i

½c�i � pi þ �imc2 þ VNðriÞ� þ
X
i<j

1

jri � rjj ;

(1)

where ri refers to the electron coordinates; � and �, the
Dirac matrices; and VNðriÞ, the nuclear potential, and the
last term is the electron-electron Coulomb interaction. The
key and the most challenging step in atomic many-body
physics is to incorporate the effects of the electron-electron
Coulomb interaction [last term in Eq. (1)] as accurately as
possible. Under the independent particle and the central
field approximations [15], with the introduction of the
Dirac-Fock potential, the above Hamiltonian can be sepa-
rated into an exactly solvable part (H0) and a residual
interaction part which consists of the Coulomb interaction
and the Dirac-Fock potential [15]. The single particle wave
functions are computed self-consistently from H0, and the
many particle wave functions are expressed as Slater de-
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terminants built out of the single particle wave functions.
The effects of the residual Coulomb interaction are calcu-
lated with many-body methods. For this, the finite order
many-body perturbation theory (MBPT) and the configu-
ration interaction (CI) approach are two widely used meth-
ods [15]. An even superior method, with strong theoretical
many-body physics underpinnings is the coupled-cluster
theory. In this Letter, the P and T violating interactions are
treated perturbatively to first order. This is in addition to
the electron-electron residual Coulomb interaction within
the framework of the relativistic coupled-cluster theory.

The wave function in coupled-cluster theory has an
exponential structure (see [16] for a recent review of the
method) to describe correlation effects in many-body sys-
tems. It is nonperturbative and defines atomic states as a
superposition of states of different levels of excitations,
with respect to a reference state. These arise from the
residual Coulomb interactions.

Mathematically, the coupled-cluster wave function can
be expressed as

j�ii ¼ eT
ð0Þ j�ii; (2)

where j�ii is the reference state containing a fixed number

of electrons and Tð0Þ is an operator which excites electrons
out of it, thereby giving rise to states with different levels of
excitations corresponding to different many-body effects.
In our calculations we use the coupled-cluster singles and

doubles approximation, that is, Tð0Þ ¼ Tð0Þ
1 þ Tð0Þ

2 . In sec-
ond quantized form

Tð0Þ
1 ¼ X

a;p

aypaat
p
a ð0Þ and Tð0Þ

2 ¼ X
a;b;p;q

aypayqabaat
pq
abð0Þ

excite one and two electrons, respectively, from the refer-
ence state, where tpað0Þ and tpqabð0Þ are the respective am-

plitudes. The equations that determine the amplitudes of

Tð0Þ are a set of coupled nonlinear algebraic equations, and
these are solved iteratively till convergence.

For closed-shell atoms, as mentioned earlier, one promi-
nent source of EDMs is the nuclear Schiff moment S, a P
and T odd electromagnetic moment of the nucleus [17].
For a finite size nucleus of radius RN , the Schiff moment
potential [18] is

’ðRÞ ¼ � 3S �R
B

�NðRÞ; (3)

where B ¼ R
�NðRÞR4dR and �NðRÞ is the nuclear density.

This potential interacts electrostatically with the electrons
and mixes atomic states of opposite parities to generate a
finite atomic EDM, dA. Then the atomic Hamiltonian is
Hatom ¼ HDC þHPTVð�Þ, where HSchiff

PTV ðSÞ ¼ �’ðRÞ is
the P and T violating interaction Hamiltonian and � is a
T or CP violation parameter which can be considered as a
perturbation parameter. The eigenstates of theHatom are the

mixed parity states j ~�i. To incorporate HPTV as a first
order perturbation, the exponential operator in coupled-

cluster theory is redefined as eT
ð0Þþ�Tð1Þ

. The cluster opera-

tor Tð1Þ has one order of HPTV and mixes the states of
opposite parities. As a result of this, the ground state is

j ~�0i ¼ eT
ð0Þþ�Tð1Þ j�0i: (4)

Then, as HPTV is considered to first order only, the equa-

tions for the amplitudes of Tð1Þ are a set of linear algebraic
equations,

h�0
0j½ �HN; T

ð1Þ�j�0i ¼ �h�0
0j �HPTVj�0i; (5)

�O ¼ eT
ð0Þy

OeT
ð0Þ
where O is a general operator, HN is the

normal-ordered Hamiltonian, and j�0
0i are opposite parity

Slater determinants. Further, as in the unperturbed cluster

operators Tð0Þ, we use the approximation Tð1Þ ¼Tð1Þ
1 þTð1Þ

2 .

Then the atomic EDM of the ground state is

dA ¼ h ~�0jDj ~�0i
h ~�0j ~�0i

; (6)

where D is the electric dipole operator. In the above
expression, after expanding in terms of the cluster opera-

tors Tð0Þ and Tð1Þ, only the terms first order in Tð1Þ contrib-
ute. Often, dA is computed perturbatively with the sum
over states approach, which necessitates a truncation after
the first few intermediate states. On the contrary, our
relativistic coupled-cluster scheme does not involve sum-
ming over states and subsumes all possible intermediate
states within the chosen configuration space.
Besides the NSM, the other dominant source of EDM in

closed-shell atoms is the tensor-pseudotensor electron-
nucleus interaction

HT-PT
PTV ðCTÞ ¼ iGFCTffiffiffi

2
p X

i

�N � �i�NðrÞ; (7)

where GF is a Fermi constant, CT is a coupling constant,
�N is a nuclear spin, and �i is a Dirac matrix. It must be
emphasized that this form of interaction does not exist
within the standard model of particle physics as CT is
zero. However, there are models which predict such an
interaction [14].
To extract the T or CP violation parameters, the atomic

theory calculations are combined with the experimental
data. In this context it is appropriate to rewrite Eq. (6) as

dA ¼ ��; (8)

where � is the atomic enhancement factor. As defined
earlier, the constant � is a T or CP violation parameter
considered as a perturbation parameter. It can, for example,
be the nuclear Schiff moment S or the coupling constant
CT . A precision atomic many-body calculation, like the
coupled-cluster calculation reported here, would provide
the value for a particular �. Experimentally, the measured
atomic EDM dA is the sum total of contributions from all
the P and T symmetry violating phenomena within the
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atom. A bound on � ¼ dA=� is obtained by combining the
results of atomic theory and experimental data. Depending
on the choice of the atom, it is possible to identify the
dominant sources of T or CP violation and derive tighter
bounds.

For the present set of calculations, we employ the even-
tempered Gaussian basis set expansion [19,20]. The orbital
basis set consist of ð1–18Þs, ð2–18Þp1=2;3=2, ð3–13Þd3=2;5=2,
ð4–11Þf5=2;7=2, ð5–9Þg7=2;9=2, and ð6–7Þh9=2;11=2. This or-

bital basis set is considered complete for the coupled
perturbed Hartree-Fock (CPHF) calculations. That is, fur-
ther increase in the number of orbitals does not change
the results. In addition, we compute the ground state di-
pole scalar polarizability for 199Hg. We obtain a value
33:294ea30, where a0 is the Bohr radius, which is in ex-

cellent agreement with the experimental value 33:91�
0:34 [21].

To date, among the closed-shell atoms, 199Hg, as men-
tioned earlier, sets the standard for the most precise EDM
results. In a recent paper [12], the new upper limit is
reported as

jdð199HgÞj< 3:1� 10�29e cm ð95% C:L:Þ: (9)

Our atomic calculation based on the relativistic coupled-
cluster theory gives

dSchiffA ð199HgÞ ¼ �5:07� 10�17

�
S

e fm3

�
e cm: (10)

This is the first ever relativistic coupled-cluster result for
any atomic EDM calculation arising from the NSM.
Combining with the experimental result, the limit on the
NSM is

Sð199HgÞ< 6:1� 10�13e fm3: (11)

There is a large deviation of 96% between the combined
results of the CPHF method and CIþMBPT [22],

dSchiffA ð199HgÞ ¼ �2:8� 10�17

�
S

e fm3

�
e cm; (12)

and our result obtained using the relativistic coupled-
cluster theory. At the level of CPHF, our result [23] is in
good agreement with that of Ref. [22]. The large difference
in the final results of two the calculations demonstrates the
importance of electron correlation effects and their inter-
play with the HSchiff

PTV interaction in determining the magni-
tude of the NSM. We have used a larger basis set in our
calculation than Dzuba et al. Unlike them, we have taken
into account all possible intermediate states that arise
within the chosen basis in the framework of the relativistic
coupled-cluster singles and doubles.

It is possible to separate the contributions of individ-
ual terms in Eq. (6). The earlier calculations [22,24] in-
corporate only a certain class of two-particle two-hole
excitations which are subset of the correlation effects we

have included through the cluster operator Tð0Þ in the

present calculation. The dominant contribution to the

EDM of atomic 199Hg comes from the term Tð1Þy
1 D,

followed by that of Tð1Þy
1 DTð0Þ

2 . In Eq. (10) these terms
individually contribute �5:40� 10�17½S=ðe fm3Þ�e cm
and �0:17� 10�17½S=ðe fm3Þ�e cm, respectively.
Our result for 199Hg EDM arising from the electron-

nucleus tensor-pseudotensor interaction is

dT-PTA ¼ �4:3� 10�20CT�Ne cm: (13)

Compared to the CPHF result �6:19� 10�20CT�Ne cm
[23,24], the change with the additional correlation effects
is not so dramatic. There is a decrease of 31%, which is
significant but not so spectacular as in dSchiffA ð199HgÞ. This
comparison demonstrates, without any ambiguity, the im-
portance of electron correlation effects in precision atomic
EDM calculations. A closer examination of the structure of
the two P and T violating Hamiltonians in this Letter sheds
some light on why the electron correlation effects are
larger in the case of the NSM than the tensor-pseudotensor
interaction. The reasons for the observed change are the
following. The electron-nucleus P and T violating inter-
action that induces the NSM is a diagonal operator. In other
words, this operator mixes the like components of two
relativistic orbitals, i.e., large with large and small with
small when its matrix element is evaluated. In contrast, the
electron-nucleus tensor-pseudotensor interaction is off-
diagonal, and therefore its matrix elements are suppressed
by an order (v=c) relative to the NSM. In addition, the
matrix elements of the NSM are significant for s and p1=2

orbitals and also s and p3=2 orbitals. However, the matrix

element of the tensor-pseudotensor interaction is sizeable
only for s and p1=2 orbitals. The existence of the s� p3=2

matrix element in the former case results in additional
correlation contributions in the NSM induced EDM in
comparison to its tensor-pseudotensor counterpart.
The individual contributions of the different terms to

tensor-pseudotensor EDM follow a trend similar to that of

NSM. The terms Tð1Þy
1 D and Tð1ÞyDTð0Þ

2 give the largest

(�95%) and the second largest contributions to dT-PTA ,
�4:8� 10�20CT�Ne cm and �0:27� 10�20CT�Ne cm,
respectively. Then, a limit

CT < 1:4� 10�9; (14)

is obtained after combining our results with the experi-
mental data.
Assuming that the NSM arises from the nucleon-

nucleon interactions with pions as the dominant mediators,
we get [25]

S ð199HgÞ ¼ g�NN½0:01 �gð0Þ�NN þ 0:07 �gð1Þ�NN

þ 0:02 �gð2Þ�NN�e fm3; (15)

where g�NN and �gðiÞ�NN are the CP conserving and CP
violating pion-nucleon coupling constants, respectively.
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Here, i ¼ 0, 1, and 2 represent isoscalar, isovector, and

isotensor, respectively. Considering �gð1Þ�NN as the most
dominant, then

�g ð1Þ
�NN < 6:4� 10�13: (16)

The coupling constant �gð1Þ�NN is related to the chromo-
EDMs of quarks [26] from the above result:

ð~du � ~ddÞ< 3:2� 10�27e cm: (17)

Next, consider the maximum contribution to NSM arising

from �gð0Þ�NN; then

�g ð0Þ
�NN < 4:5� 10�12: (18)

Since �gð0Þ�NN ¼ 0:027�QCD [27], we get the bound

�QCD < 1:7� 10�10: (19)

The value we have obtained for the NSM is likely to
give the most stringent bounds for supersymmetric
CP violating phases [9,10,28]. In addition, from our results
and the experimental data, it is also possible to set im-
proved limits on the specific CP violating parameters
predicted by various extensions of the standard model,
	SUSYq , 	Higgs, xLR [29].

In conclusion, we have developed a unique relativistic
coupled-cluster-based many-body method that takes into
account the physical effects arising from the interplay of
two very different kinds of fundamental interactions—the
CP conserving electron-electron Coulomb and CP violat-
ing electron-nucleus interactions. The results obtained for
the EDM of 199Hg by the application of this method and the
latest experiment on this atom [12] yield the most accurate
limits to date on some important CP violating parameters.
The electron correlation effects play a critical role in
improving the existing limit on these parameters. These
limits constrain the possible extensions to the standard
model, thereby enhancing our current knowledge of the
intriguing phenomenon of CP violation.
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