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The first practical method to evolve many-body nuclear forces to softened form using the similarity

renormalization group in a harmonic oscillator basis is demonstrated. When applied to 4He calculations,

the two- and three-body oscillator matrix elements yield rapid convergence of the ground-state energy

with a small net contribution of the induced four-body force.
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A major goal of nuclear structure theory is to make
quantitative calculations of low-energy nuclear observ-
ables starting from microscopic internucleon forces.
Chiral effective field theory (�EFT) provides a systematic
construction of these forces, including a hierarchy of
many-body forces of decreasing strength [1]. Renormal-
ization group (RG) methods can be used to soften the short-
range repulsion and short-range tensor components of the
initial chiral interactions so that convergence of nuclear
structure calculations is greatly accelerated [2,3]. The dif-
ficulty is that these transformations (or any other soften-
ing transformations) change the short-range many-body
forces. To account for these changes, we present in this
Letter the first consistent evolution of three-body forces by
using the similarity renormalization group (SRG) [4–8],
which offers a technically simpler approach to evolving
many-body forces than other RG formulations. Our results
show that both the many-body hierarchy of �EFT and the
improved convergence properties are preserved.

The SRG is a series of unitary transformations of the
free-space Hamiltonian (H � H�¼1),

H� ¼ U�H�¼1U
y
�; (1)

labeled by a momentum parameter � that runs from 1
toward zero, which keeps track of the sequence of
Hamiltonians (s ¼ 1=�4 has been used elsewhere [7,8]).
These transformations are implemented as a flow equation
in � (in units where @2=M ¼ 1),

dH�

d�
¼ � 4

�5
½½T;H��; H��; (2)

whose form guarantees that the H�’s are unitarily equiva-
lent [6,7].

The appearance of the nucleon kinetic energy T in
Eq. (2) leads to high- and low-momentum parts of H�

being decoupled, which means softer and more convergent
potentials [9]. This is evident in a partial-wave momentum
basis, where matrix elements hkjH�jk0i connecting states
with (kinetic) energies differing by more than �2 are sup-

pressed by e�ðk2�k02Þ2=�4
factors and therefore the states

decouple as � decreases. [Decoupling also results from

replacing T in Eq. (2) with other generators [6,7,10,11].]
The optimal range for � is not yet established and also
depends on the system, but experience with SRG and other
low-momentum potentials suggest that running to about
� ¼ 2:0 fm�1 is a good compromise between improved
convergence from decoupling and the growth of induced
many-body interactions [9]. [Also, differences between
using T and the diagonal of H� in Eq. (2), which can be
very important in some situations [10], are negligible in
this � range.]
To see how the two-, three-, and higher-body potentials

are identified, it is useful to decompose H� in a second-
quantized form. Schematically (suppressing indices and
sums),

H� ¼ hTiayaþhVð2Þ
� iayayaaþhVð3Þ

� iayayayaaaþ�� � ;
(3)

where ay, a are creation and destruction operators with
respect to the vacuum in some (coupled) single-particle

basis. This defines hTi, hVð2Þ
� i, hVð3Þ

� i; . . . as the one-body,

two-body, three-body, . . .matrix elements at each �. Upon
evaluating the commutators in Eq. (2) using H� from
Eq. (3), we see that even if initially there are only two-
body potentials, higher-body potentials are generated with
each step in �. Thus, when applied in an A-body subspace,
the SRG will ‘‘induce’’ A-body forces. But we also see that

hTi is fixed, hVð2Þ
� i is determined only in the A ¼ 2 sub-

space with no dependence on hVð3Þ
� i, hVð3Þ

� i is determined in

A ¼ 3 given hVð2Þ
� i, and so on.

Since only the Hamiltonian enters the SRG evolution
equations, there are no difficulties from having to solve T
matrices in all channels for different A-body systems.
However, in a momentum basis the presence of spectator
nucleons requires solving separate equations for each set of

hVðnÞ
� i matrix elements. In Refs. [12,13], a diagrammatic

approach is introduced to handle this decomposition. But
while it is natural to solve Eq. (2) in momentum represen-
tation, it is an operator equation so we can use any conve-
nient basis. Here we evolve in a discrete basis, where
spectators are handled without a decomposition and in-
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duced many-body forces can be directly identified. Having
chosen such a basis, we obtain coupled first-order differ-
ential equations for the matrix elements of the flowing
Hamiltonian H�, where the right side of Eq. (2) is eval-
uated using simple matrix multiplications.

Our calculations are performed in the Jacobi coordinate
harmonic oscillator (HO) basis of the no-core shell model
(NCSM) [14]. This is a translationally invariant, antisym-
metric basis for each A, with a complete set of states up to a
maximum excitation of Nmax@� above the minimum en-
ergy configuration, where � is the harmonic oscillator
parameter. The procedures used here build directly on
Ref. [13], which presents a one-dimensional implementa-
tion of our approach along with a general analysis of the
evolving many-body hierarchy.

We start by evolving H� in the A ¼ 2 subsystem, which

completely fixes the two-body matrix elements hVð2Þ
� i.

Next, by evolving H� in the A ¼ 3 subsystem we deter-
mine the combined two-plus-three-body matrix elements.
We can isolate the three-body matrix elements by subtract-

ing the evolved hVð2Þ
� i elements in the A ¼ 3 basis [13].

Having obtained the separate NN and NNN matrix ele-
ments, we can apply them unchanged to any nucleus. We
are also free to include any initial three-nucleon force in
the initial Hamiltonian without changing the procedure. If
applied to A � 4, four-body (and higher) forces will not be
included and so the transformations will be only approxi-
mately unitary. The questions to be addressed are whether
the decreasing hierarchy of many-body forces is main-
tained and whether the induced four-body contribution is
unnaturally large. We summarize in Table I the different
calculations to be made for 3H and 4He to confront these
questions.

The initial (� ¼ 1) NN potential used here is the
500 MeV N3LO interaction from Ref. [15]. The initial
NNN potential is the N2LO interaction [16] in the local
form of Ref. [17] with constants fit to the average of triton
and 3He binding energies and to triton beta decay accord-
ing to Ref. [18]. We expect similar results from other initial
interactions because the SRG drives them toward near
universal form; a survey will be given in Ref. [19].
NCSM calculations with these initial interactions and the
parameter set in Table I of Ref. [18] yield energies of
�8:473ð4Þ MeV for 3H and�28:50ð2Þ MeV for 4He com-
pared with �8:482 MeV and �28:296 MeV from experi-
ment, respectively. So there is a 20 keV uncertainty in the
calculation of 4He from incomplete convergence and a
200 keV discrepancy with experiment. The latter is con-
sistent with the omission of three- and four-body chiral

interactions at N3LO. These provide a scale for assessing
whether induced four-body contributions are important
compared to other uncertainties.
In Fig. 1, the ground-state energy of the triton is plotted

as a function of the flow parameter �. Evolution is from
� ¼ 1, which is the initial (or ‘‘bare’’) interaction, toward
� ¼ 0. We use Nmax ¼ 36 and @� ¼ 28 MeV, for which
all energies are converged to better than 10 keV. We first
consider an NN interaction with no initial NNN (‘‘NN
only’’). If H� is evolved only in an A ¼ 2 system, higher-
body induced pieces are lost. The resulting energy calcu-
lations will only be approximately unitary for A > 2 and
the ground-state energy will vary with � (squares).
Keeping the inducedNNN yields a flat line (circles), which
implies an exactly unitary transformation; the line is
equally flat if an initial NNN is included (diamonds).
Note that the net induced three-body is comparable to the
initial NNN contribution and thus is of natural size.
In Fig. 2, we examine the SRG evolution in � for 4He

with @� ¼ 36 MeV. The hVð2Þ
� i and hVð3Þ

� i matrix elements
were evolved in A ¼ 2 and A ¼ 3withNmax ¼ 28 and then
truncated to Nmax ¼ 18 at each � to diagonalize 4He. The
NN-only curve has a similar shape as for the triton. In fact,
this pattern of variation has been observed in all SRG
calculations of light nuclei [3]. When the induced NNN
is included, the evolution is close to unitary and the pattern

TABLE I. Definitions of the various calculations.

NN only No initial NNN interaction and do not keep NNN-induced interaction.

NN þ NNN-induced No initial NNN interaction but keep the SRG-induced NNN interaction.

NN þ NNN Include an initial NNN interaction and keep the SRG-induced NNN interaction.
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FIG. 1 (color online). Ground-state energy of 3H as a function
of the SRG evolution parameter, �. See Table I for the nomen-
clature of the curves.
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only depends slightly on an initial NNN interaction. In
both cases the dotted line represents the converged value
for the initial Hamiltonian. At large �, the discrepancy is
due to a lack of convergence at Nmax ¼ 18, but at � <
3 fm�1 SRG decoupling takes over and the discrepancy is
due to short-range induced four-body forces, which there-
fore contribute about 50 keV net at � ¼ 2 fm�1. This is
small compared to the rough estimate in Ref. [20] that the
contribution from the long-ranged part of the N3LO four-
nucleon force to 4He binding is of order of a few hundred
keV. If needed, we could evolve 4-body matrix elements in
A ¼ 4 and will do so when nuclear structure codes can
accommodate them.

In Fig. 3, we show the triton ground-state energy as a
function of the oscillator basis size, Nmax, for various
calculations. The lower (upper) curves are with (without)
an initial three-body force (see Table I). The convergence
of the bare interaction is compared with the SRG evolved
to � ¼ 2:0 fm�1. The oscillator parameter @� in each case
was chosen roughly to optimize the convergence of each
Hamiltonian. (As � decreases, so does the optimal @�.) We
also compare to a Lee-Suzuki (LS) effective interaction,
which has been used in the NCSM to greatly improve
convergence [21,22]. These effective interactions result
from unitary transformations within the model space of a
given nucleus, in contrast to the free-space transformation
of the SRG, which yields nucleus-independent matrix
elements.

The SRG calculations are variational and converge
smoothly and rapidly from above with or without an initial
three-body force. The dramatic improvement in conver-
gence rate compared to the initial interaction is seen even
though the �EFT interaction is relatively soft. Thus, once

evolved, a much smaller Nmax basis is adequate for a
desired accuracy and extrapolating in Nmax is also feasible.
Figure 4 illustrates for 4He the same rapid convergence

with Nmax of an SRG-evolved interaction. However, in this
case the asymptotic value of the energy differs slightly
because of the omitted induced four-body contribution.
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FIG. 3 (color online). Ground-state energy of 3H as a function
of the basis size Nmax for an N3LO NN interaction [15] with and
without an initial NNN interaction [1,18]. Unevolved (‘‘bare’’)
and Lee-Suzuki (LS) results with @� ¼ 28 MeV are compared
with SRG at @� ¼ 20 MeV evolved to � ¼ 2:0 fm�1.
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FIG. 4 (color online). Ground-state energy of 4He as a function
of the basis size Nmax for an N3LO NN interaction [15] with an
initial NNN interaction [1,18]. Unevolved (bare) results are
compared with Lee-Suzuki (LS) and SRG evolved to � ¼
2:0 fm�1 at @� ¼ 28 and 36 MeV.
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FIG. 2 (color online). Ground-state energy of 4He as a function
of the SRG evolution parameter, �. See Table I for the nomen-
clature of the curves.
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(The SRG-evolved asymptotic values for different @�
differ by only 10 keV, so the gap between the converged
bare or LS results and the SRG results is dominated by the
induced NNNN rather than incomplete convergence).
Convergence is even faster for lower � values [19], ensur-
ing a useful range for the analysis of few-body systems.
However, because of the strong density dependence of
four-nucleon forces, it will be important to monitor the
size of the induced four-body contributions for heavier
nuclei and nuclear matter.

The impact of evolving the full three-body force is
neatly illustrated in Fig. 5, where the binding energy of
4He is plotted against the binding energy of 3H. The
experimental values of these quantities, which are known
to a small fraction of a keV, define only a point in this plane
(at the center of the X, see inset). The SRGNN-only results
trace out a trajectory in the plane that is analogous to the
well-known Tjon line (dotted), which is the approximate
locus of points for phenomenological potentials fit to NN
data but not including NNN [23]. In contrast, the short
trajectory of the SRG with the NN þ NNN interaction
(shown for � � 1:8 fm�1) highlights the small variations
from the omitted four-nucleon force. Note that a trajectory
plotted for NN þ NNN-induced calculations would be a
similarly small line at the N3LO NN-only point.

In summary, we have demonstrated a practical method
to use the SRG to evolve NNN (and higher many-body)
forces in a harmonic oscillator basis. Calculations of
A � 4 nuclei including NNN show the same favorable

convergence properties observed elsewhere for NN-only,
with a net induced four-body contribution in A ¼ 4 that
is smaller than the truncation errors of the chiral inter-
action. The soft SRG interactions are an alternative to the
use of Lee-Suzuki effective interactions in NCSM and
the HO matrix elements can also be used (after conversion
to a Slater-determinant HO basis as needed) for coupled
cluster and many-body perturbation theory calculations. A
more complete analysis of convergence and dependencies
for the energy and other observables for few-body systems,
as well as results for other interactions and choices of
generator in Eq. (2), will be given in a forthcoming pub-
lication [19].
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FIG. 5 (color online). Binding energy of the alpha particle vs
the binding energy of the triton. The Tjon line from phenome-
nological NN potentials (dotted) is compared with the trajectory
of SRG energies when only the NN interaction is kept (circles).
When the initial and induced NNN interactions are included, the
trajectory lies close to experiment for � > 1:7 fm�1 (see inset).

PRL 103, 082501 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

21 AUGUST 2009

082501-4


