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An exact form is presented for the axial-vector Bethe-Salpeter equation, which is valid when the quark-

gluon vertex is fully dressed. AWard-Takahashi identity for the Bethe-Salpeter kernel is derived therefrom

and solved for a class of dressed quark-gluon-vertex models. The solution provides a symmetry-

preserving closed system of gap and vertex equations. The analysis can be extended to the vector

equation. This enables a comparison between the responses of pseudoscalar and scalar meson masses to

nonperturbatively dressing the quark-gluon vertex. The result indicates that dynamical chiral symmetry

breaking enhances spin-orbit splitting in the meson spectrum.
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Understanding the spectrum of hadrons with masses
less than 2 GeV is essential to revealing the essence of
light-quark confinement and dynamical chiral symmetry
breaking (DCSB) and describing hadrons in terms of
QCD’s elementary degrees of freedom. These basic ques-
tions define a frontier of hadron physics, yet there are
no reliable Poincaré invariant calculations of this
spectrum.

In this spectrum the �ð1300Þ is a radial excitation of the
�ð140Þ [1], the �ð1800Þ is possibly a hybrid [2], and the
dressed quarks within scalar and pesudovector mesons pos-
sess orbital angular momentum [3,4]. Hence, relative to
ground-state pseudoscalar and vector mesons, these states
are sensitive to different features of the light-quark inter-
action and to its behavior at larger distances[1,3,4]. Such
systems are therefore more responsive to the dynamics of
light-quark confinement. The large size of both the �-�
mass difference and the splitting between parity partners
are two consequences of DCSB, which materially influen-
ces the hadron spectrum. It is anticipated but not proven
that confinement is sufficient to ensure DCSB. However,
the reverse is not true [5,6].

With respect to confinement it is important to appreciate
that the static potential measured in quenched lattice-
regularized QCD is not related in any simple way to the
question of light-quark confinement. It is a basic feature of
QCD that light-quark creation and annihilation effects are
nonperturbative and thus it is impossible in principle to
compute a potential between two light quarks [7].

Confinement can be related to the analytic properties of
QCD’s Schwinger functions [6,8,9]. Hence the question of
light-quark confinement can be translated into the chal-
lenge of charting the infrared behavior of QCD’s universal
� function. (This function may depend on the scheme
chosen to renormalize the theory but it is unique within a
given scheme [10].) Solving this well-posed problem is an
elemental goal of modern hadron physics. It can be ad-

dressed in any framework enabling the nonperturbative
evaluation of renormalization constants.
Through the gap and Bethe-Salpeter equations (BSEs)

the pointwise behavior of the � function determines the
pattern of chiral symmetry breaking. Moreover, since these
and other Dyson-Schwinger equations (DSEs) [5,6,9] con-
nect the � function to experimental observables, then the
comparison between computations and observations of the
hadron mass spectrum can be used to constrain the � func-
tion’s long-range behavior. A nonperturbative symmetry-
preserving DSE truncation is necessary to realize this goal.
Steady quantitative progress can be made with a scheme
that issystematically improvable [11,12].Onthe other hand,
one anticipates that significant qualitative advances could
be made with symmetry-preserving kernel Ansätze that ex-
press important additional nonperturbative effects, which
are difficult to capture in any finite sum of contributions.
Hitherto no such Ansatzhas been available.We remedy that.
The Poincaré covariant bound-state problem is most

easily formulated for mesons. One must first solve the
gap equation (f labels the quark flavor):

SfðpÞ�1¼Z2ði� �pþmbm
f ÞþZ1

Z �

q
g2D��ðp�qÞ

��a

2
��SfðqÞ�

a

2
�f
�ðq;pÞ; (1)

where: D��ðkÞ is the dressed-gluon propagator; �f
�ðq; pÞ is

the dressed-quark-gluon vertex;
R
�
q is a Poincaré invariant

regularization of the integral, with � the regularization
mass scale; mbmð�Þ is the Lagrangian current-quark bare
mass; and Z1;2ð�2;�2Þ are, respectively, the vertex and

quark wave function renormalization constants, with �
the renormalization point—dependence upon which we
do not usually make explicit. The gap equation’s solution
is the dressed-quark propagator, which can be written

SðpÞ�1 ¼ i� � pAðp2; �2Þ þ Bðp2; �2Þ: (2)
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The propagator is obtained from Eq. (1) augmented by a renormalization condition. A mass-independent scheme can be
implemented by fixing all renormalization constants in the chiral limit [13].

Pseudoscalar and axial-vector mesons appear as poles in the inhomogeneous BSE for the axial-vector vertex, �fg
5�. An

exact form of that equation is

�fg
5�ðk;PÞ ¼ Z2�5�� �

Z
q
g2D	�ðk� qÞ�

a

2
�	SfðqþÞ�fg
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�a

2
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þ
Z
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2
�	SfðqþÞ�

a

2
�fg

5��ðk; q;PÞ; (3)

where �fg
5�� is a four-point Schwinger function that is

completely defined via the quark self-energy [11,12].
Owing to Poincaré covariance, one can use q� ¼
q� P=2, etc., without loss of generality. Equation (3)
includes all legitimate contributions to the Bethe-Salpeter
kernel and nothing extraneous. This realization generalizes
the perspective of Ref. [14]. The pseudoscalar vertex,
�fg
5 ðk;PÞ, satisfies an analogous equation and has the

general form

i�fg
5 ðk;PÞ ¼ �5½iE5ðk;PÞ þ � � PF5ðk;PÞ

þ � � kG5ðk;PÞ þ 
��k�P�H5ðk;PÞ�: (4)

In any reliable study of light-quark hadrons the solution
of Eq. (3) must satisfy the axial-vector Ward-Takahashi

identity; i.e.., with �fg
5 the pseudoscalar vertex,

P��
fg
5�ðk;PÞ ¼ S�1

f ðkþÞi�5 þ i�5S
�1
g ðk�Þ

� i½mf þmg��fg
5 ðk;PÞ; (5)

which expresses chiral symmetry and its breaking pattern.
We have established that the condition

P��
fg
5��ðk; q;PÞ ¼ �f

�ðqþ; kþÞi�5 þ i�5�
g
�ðq�; k�Þ

� i½mf þmg��fg
5�ðk; q;PÞ; (6)

where �fg
5� is the analogue of �fg

5�� in the pseudoscalar

equation, is necessary and sufficient to ensure Eq. (5) is
satisfied. Sufficiency may be verified by contracting Eq. (3)
with P�, inserting Eq. (5), appealing to Eq. (6) and sub-

sequently reorganizing terms so as to identify the BSE for

�fg
5�. Necessity follows from analyzing the left-hand side

of Eq. (6) and using Eq. (5) to establish the right.
Consider Eq. (6). Rainbow ladder is the leading-order

term in the DSE truncation of Refs. [11,12]. It corresponds

to �f
� ¼ ��, in which case Eq. (6) is solved by �fg

5�� �
0 � �fg

5�. This is the solution that indeed provides the

rainbow-ladder forms of Eq. (3). Such consistency will
be apparent in any valid systematic term-by-term improve-
ment of the rainbow-ladder truncation.

However, Eq. (6) is far more than merely a device for
checking a truncation’s consistency. For, just as the vector
Ward-Takahashi identity has long been used to build
Ansätze for the dressed-quark-photon vertex [9,15],

Eq. (6) provides a way to construct a symmetry preserving
kernel of the BSE that is matched to any reasonable Ansatz
for the quark-gluon vertex that appears in Eq. (1). With this
powerful capacity Eq. (6) realizes a long-standing goal.
To illustrate, suppose that in Eq. (1) one employs an

Ansatz for the quark-gluon vertex which satisfies

P�i�
f
�ðkþ; k�Þ ¼ BðP2Þ½S�1

f ðkþÞ � S�1
f ðk�Þ�; (7)

withB flavor independent. NB.While the true quark-gluon
vertex does not satisfy this identity, owing to the form of
the Slavnov-Taylor identity which it does satisfy, it is
plausible that a solution of Eq. (7) can provide a reasonable
pointwise approximation to the true vertex.
Given Eq. (7), then Eq. (6) entails (l ¼ k� q)

il��
fg
5�ðk; q;PÞ ¼ Bðl2Þ½�fg

5 ðq;PÞ � �fg
5 ðk;PÞ�; (8)

with an analogous equation for P�l�i�
fg
5��ðk; q;PÞ.

This identity can be solved to obtain

�fg
5�ðk; q;PÞ :¼ Bððk� qÞ2Þ�5

��fg
� ðk; q;PÞ; (9)

with, using Eq. (4) and writing ‘ ¼ ðqþ kÞ=2,
��fg
� ðk; q;PÞ ¼ 2‘�½i�E5

ðq; k;PÞ þ � � P�F5
ðq; k;PÞ�

þ ���G5
ðq; k;PÞ þ 2‘�� � ‘�G5

ðq; k;PÞ
þ ½��; � � P��H5

ðq; k;PÞ
þ 2‘�½� � ‘; � � P��H5

ðq; k;PÞ; (10)

with ��ðq; k;PÞ ¼ ½�ðq;PÞ þ�ðk;PÞ�=2 and
��ðq; k;PÞ ¼ ½�ðq;PÞ ��ðk;PÞ�=½q2 � k2�.
Now, given any Ansatz for the quark-gluon vertex that

satisfies Eq. (7), then the pseudoscalar analogue of Eq. (3)
and Eqs. (1), (9), and (10) provide a symmetry-preserving
closed system whose solution predicts the properties of
pseudoscalar mesons. The system can be used to antici-
pate, elucidate and understand the impact on hadron prop-
erties of the rich nonperturbative structure expected of the
fully-dressed quark-gluon vertex in QCD.
To exemplify, we consider ground-state pseudoscalar

and scalar mesons composed of equal-mass u and d quarks.
The inhomogeneous BSE for the scalar vertex describes
scalar mesons. It is straightforward to adapt the discussion
already presented to derive the scalar-vertex analogues of,
e.g., Eqs. (9) and (10). (We are aware of the effects of
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resonant contributions to the kernel in the scalar channel
[16] but they are not pertinent herein.)

To proceed we need only specify the gap equation’s
kernel because the BSEs are completely defined therefrom.
The kernel is typically rendered by writing

Z1g
2D�
ðtÞ�
ðq;qþ tÞ¼Gðt2ÞDfree

�
 ðtÞ�
ðq;qþ tÞ; (11)

wherein Dfree
�
 is the Landau-gauge free-gauge-boson

propagator, G is an interaction model and �
 is a vertex
Ansatz. Herein we employ the Ball-Chiu (BC) model for
the dressed-quark-gluon vertex [15]:

i��ðq; kÞ ¼ i�Aðq2; k2Þ�� þ 2‘�½i� � ‘�Aðq2; k2Þ
þ�Bðq2; k2Þ�; (12)

where A, B appear in Eq. (2); and a simplified form of the
effective interaction in Ref. [17]:

Gð‘2Þ
‘2

¼ 4�2

!6
D‘2e�‘2=!2

: (13)

NB. Equation (12) does not enforce B � 1 in Eq. (7): a
deviation from unity can always be absorbed into the gluon
propagator. These Ansätze are used for illustrative simplic-
ity, not out of necessity. The status of DSE studies of
propagators and vertices can be tracked from Ref. [6].

Equation (13) delivers an ultraviolet finite model gap
equation. Hence, the regularization mass scale can be
removed to infinity and the renormalization constants set
equal to one. For comparison we also report results ob-
tained in the rainbow-ladder truncation; namely, with

�
ðq; pÞ ¼ �
: (14)

The active parameters in Eq. (13) are D and ! but they
are not independent: a change in D is compensated by an
alteration of! [5]. For! 2 ½0:3; 0:5� GeV, using Eq. (14),
ground-state pseudoscalar and vector-meson observables
are roughly constant if !D ¼ ð0:8 GeVÞ3.

We obtain meson masses from the inhomogeneous BSEs
following Secs. 3.1, 3.2 of Ref. [18], with the results
presented in Table I. The quark condensate reported in
that table is obtained from the trace of the chiral-limit
dressed-quark propagator and the chiral-limit leptonic de-
cay constant is determined from the relation [19]:

ðf0�Þ2 ¼
�h �qqi0�
s0�ð�Þ

; s0�ð�Þ ¼ m�

dm�

dmð�Þ
��������m̂¼0

: (15)

[Remember, the renormalization point is removed to infin-
ity when using Eq. (13).] Both the condensate and decay
constant are order parameters for DCSB. It is evident that
dressing the vertex amplifies this phenomenon.

Herein, for the first time, Eq. (15) can veraciously be
used for a truncation whose diagrammatic content is un-
known because we have enabled a direct calculation of the
current-quark-mass dependence of meson masses obtained
with the Ball-Chiu vertex. That dependence is depicted in
Fig. 1 and compared with the rainbow-ladder result. Them

dependence of the pseudoscalar meson’s mass provides
numerical confirmation that the axial-vector Ward-
Takahashi identity is preserved by both the rainbow-ladder
truncation and our BC-consistent Ansatz for the Bethe-
Salpeter kernel. The figure also shows that the axial-vector
Ward-Takahashi identity and DCSB conspire to shield the
pion’s mass from material variation in response to dressing
the quark-gluon vertex [5,14].
Since our procedure ensures that Eq. (15) provides a true

result for f0�, we can explore the accuracy of two formulae
oft used to estimate this quantity. We find that of Ref. [20]
generally provides the more reliable estimate (see Table I).
The estimation formulae are more reliable in rainbow-
ladder truncation because they are derived under the as-
sumption that the bound-state analogues of F5, G5, H5 in
Eq. (4) are zero. The importance of these amplitudes is
signalled by the magnitude of [Að0Þ � 1] [19], which, for a
given mass scale in Eq. (13), is smaller in the rainbow
truncation (see Table I).
In the rainbow-ladder DSE truncation, using a kernel

with realistic interaction strength, one finds [17,21–23]

"RL
 :¼ 2Mð0Þ �m


2Mð0Þ
��������RL

¼ ð0:3� 0:1Þ: (16)

This can be contrasted with the value obtained using our
Ansatz for the BC-consistent Bethe-Salpeter kernel; viz.,

"BC
 & 0:1: (17)

Plainly, significant additional repulsion is present in the
BC-consistent truncation of the scalar BSE.

TABLE I. Upper panel—Selected results. Current-quark
masses: upper rows—6.4 MeV; next two—6 MeV; and low-
est—5 MeV. Notes: (i) h �qqi0, f0� are, respectively, the chiral-
limit quark condensate and pion decay constant; and (ii) D! ¼ 1

4

is only slightly above the critical interaction strength for DCSB
in the rainbow gap equation [13], which explains the values in
Row 2. Lower panel—Comparison between the exact chiral-
limit decay constant, Eq. (15), and two oft used estimation
formulae: respectively, Eqs. (C.4) and (7.57) of Ref. [9], with
percentage errors in parentheses. Experimentally, f� ¼
0:092 GeV. (! ¼ 0:5 GeV throughout; Að0Þ, dimensionless;
D, GeV2; and other entries quoted in GeV.)

Vertex D Að0Þ Mð0Þ �ðh �qqi0Þ1=3 f0� m� m


Equation (14), RL 1
2 0.97 0.049 0.13 0.029 0.16 0.27

Equation (12), BC 1.1 0.28 0.26 0.11 0.14 0.56

Equation (14), RL 2
3 1.1 0.21 0.21 0.071 0.14 0.44

Equation (12), BC 1.3 0.44 0.30 0.13 0.14 0.81

Equation (14), RL 1 1.3 0.40 0.25 0.091 0.14 0.64

Equation (12), BC 1.8 0.62 0.36 0.16 0.13 1.1

Vertex D f0� f0�PS f0�CR

Equation (14), RL 2
3 0.071 0.063 (10%) 0.070 (-0.4%)

Equation (12), BC 0.13 0.10 (25%) 0.12 (12%)
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Scalar mesons are identified as 3P0 states. This assign-

ment reflects a constituent-quark model perspective, from
which a JPC ¼ 0þþ meson must have the constituents’
spins aligned and one unit of constituent orbital angular
momentum. From this viewpoint a scalar is a spin and
orbital excitation of a pseudoscalar meson. Extant studies
of realistic corrections to the rainbow-ladder truncation
show that they reduce hyperfine splitting [14]. Hence, the
comparison between Eqs. (16) and (17) indicates that in a
Poincaré covariant treatment the BC-consistent truncation
magnifies spin-orbit splitting. We attribute this to the in-
fluence of the quark’s dynamically-enhanced scalar self-
energy [6] in the Bethe-Salpeter kernel.

We expect this feature to have a material impact on
mesons with mass greater than 1 GeV. Indeed, prima facie
it can plausibly overcome a long-standing shortcoming of
the rainbow-ladder truncation; viz., that the splitting be-
tween vector and axial-vector mesons is too small [24].
This expectation is supported by Ref. [4] wherein, using a
separable Ansatz for the Bethe-Salpeter kernel which de-
pends explicitly on the strength of DCSB, a vector–axial-
vector mass splitting is obtained that is commensurate with
experiment.

We presented a Ward-Takahashi identity for the pseu-
dovector Bethe-Salpeter kernel, Eq. (6), and used it to
construct a symmetry-preserving Ansatz for this kernel,
Eqs. (9) and (10), which is consistent with a large class
of dressed-quark-gluon vertices whose diagrammatic con-
tent cannot be specified. Although we did not explicitly
report formulae, our procedure extends readily to the vec-
tor Bethe-Salpeter equation. We were therefore able to
complete the first exploration of the effect of nonperturba-
tive vertex dressing on the masses of pseudoscalar and

scalar mesons. Our results indicate that the dressed-light-
quark mass function, which is inextricably connected with
dynamical chiral symmetry breaking, acts to magnify spin-
orbit splitting in the meson spectrum.
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FIG. 1. Current-quark-mass dependence of pseudoscalar
(lower portion) and scalar (upper) meson masses, obtained
with D ¼ 1 GeV2. The Ball-Chiu vertex [BC, Eq. (12)] result
is compared with the rainbow-ladder result [RL, Eq. (14)].
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