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In contrast with charge vortices, spin vortices in a two-dimensional ferromagnetic condensate move

inertially (if the condensate has zero magnetization along an axis). The Magnus force, which prevents the

inertial motion of the charge vortices, cancels for spin vortices, because they are composed of two

oppositely rotating vortices. The inertial mass of spin vortices varies inversely with the strength of spin-

dependent interactions and directly with the width of the condensate layer, and can be measured as a part

of experiments on how spin vortices orbit one another. For Rb87 in a 1 �m thick trap, mv � 10�21 kg.
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Vortices, with their long life and concentration of en-
ergy, often provoke comparison to particles. But does their
motion fit the analogy? Ordinary vortices in a fluid or
superfluid do not move inertially, as particles do, because
their motion is Magnus-force dominated. For example, in
the absence of a force, they do not move. When a force is
applied, they move perpendicular to it, a situation which is
described by first-order differential equations [1]. In fact,
the motion of a pair of vortices is a miniature version of
how Descartes [2] explained the motion of planets, with the
Sun causing the ether to whirl around, dragging the planets
at the same speed. On the other hand, spinor superfluids [3–
5] made out of laser-cooled atoms can have spin-current
vortices. These vortices will be argued to obey Newton’s
laws at low speeds; in particular, they have a mass, which
determines their resistance to being accelerated. The jus-
tification of these properties of spin vortices described here
is inspired partly by the motion of vortex rings [6,7].

An ordinary vortex in a superconductor or superfluid can
have some inertial behavior. The mass may play a role in
determining the oscillation frequency of vortex lattices and
the tunneling rate of vortices [8]. Observing the mass for
such vortices is much more subtle than for spin vortices,
though, because the Magnus force is so strong.

We will focus on the case of spin 1 ferromagnetic atoms
in a two-dimensional homogeneous condensate. This
idealized model accurately represents a gas in a trap, nar-
row in the z direction, and much wider than a vortex core in
the x and y directions. The spinor c ðx; yÞ describing the

condensate has the HamiltonianH ¼RR
dxdyð @22m jrc j2þ

V Þ; the potential energy is

V ¼ 1
2�:ðc yc Þ2:þ 1

2�:ðc ySc Þ2:þ qc yS2zc ��jc j2:
(1)

Here � and � describe the mean and spin-dependent
interaction parameters, and q and � are the quadratic
Zeeman energy and chemical potential, respectively.

Spin vortices occur in ferromagnetic condensates (de-
fined by �< 0 [5]), and they are not stable without the
quadratic Zeeman term. This can be produced by applying

a magnetic field along z. The ground states of the conden-
sate have the form

c ¼ ei�Cþi�SSz
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The values n1, n0, n�1 correspond to the optimal propor-
tions of the three spin states, and are fixed (the total density
is n ¼ n1 þ n0 þ n�1). If the magnetization along the
z-axis, Mz ¼ n1 � n�1, vanishes, then the spin is in the
xy-plane, as is preferred by the quadratic Zeeman effect.
The overall phase of the wave function (which is not
observable) is �C, and ��S is the azimuthal angle of the
spin. (To see this, calculate hSxi and hSyi for this state.) The
latter angle can be measured by scattering polarized light
off the condensate.
There are two types of vortices in a spinor condensate in

a magnetic field: a charge vortex, described by �C ¼ ��,
�S ¼ 0 and a spin vortex described by �C ¼ 0, �S ¼ ��
(and observed in a rubidium-87 condensate [9]). Here,� is
the azimuthal angle centered on the vortex core. Figure 1
illustrates these vortices:
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FIG. 1. Charge and spin vortices of strength 2�. (a),(c) The
currents of the spin states around charge and spin vortices. (b),
(d) The spin textures around charge and spin vortices.
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The spin texture is uniform around a charge vortex (except
near the core); the spin direction rotates by 360� clockwise
or counterclockwise in a spin vortex.

A spinor condensate is similar to a mixture of several
species of atoms. From this perspective, a spin vortex is a
bound state of two opposite vortices in different compo-
nents, and a charge vortex is a bound state of three vortices.

The velocity fields, @

Mr�m [6], in the components of a

spinor condensate are related:

u 1 ¼ uC þ uS; u0 ¼ uC; u�1 ¼ uC � uS; (4)

the flow in the middle component is the mean of the flows
in the other two components. Vortices can be classified by
the amounts �C and �S wind by, QC and QS respectively.
Near a charge vortex, QS ¼ 0 and uS ¼ 0, since �S is
constant. Hence all the atoms move in the same direction
[see Fig. 1(a)], and there is a net transport of mass, called
the charge current JC. On the other hand, near a spin vortex
there is no net flux of atoms JC if the magnetization
vanishes, since the atoms of spin �1 move at equal and
opposite speeds. Such a flow does have a nonzero current
of spin, JS. (If Mz � 0, charge and spin vortices each
produce both kinds of currents: JC ¼ nuC þMzuS and
JS ¼ qzuS þMzuC where qz ¼ c yS2zc .)

Now the force on a vortex moving at speed v and tossed
about by a flow of charge and spin is given by _p ¼ �@ẑ�
½P nmQmðum � vÞ�. The term for a given value of m
describes the lift force on the vortex in that component:
according to Bernoulli’s principle higher velocities corre-
spond to lower pressures, so the vortex moves to the side
where its velocity field is parallel to the relative velocity of
the fluid. For a spin vortex of charge QS, the previous
expression for the Bernoulli forces can be summed and
written in the form

_p ¼ FS �QSv� @Mzẑ: (5)

Here the force FS is proportional to the background spin
current and the second term is the Magnus force, or lift,
responding to the vortex’s own motion. For a charge vortex
of charge QC, the force (if Mz ¼ 0) is _p ¼ FC �QCv�
@nẑ, where FC is produced by charge current.

Idiosyncrasies of vortex motion.—Let us compare the
motion of charge and spin vortices. A charge vortex in
stationary fluid cannot drift along a straight line, because
the lift force would push it sideways. Furthermore, the
equations of motion take the form of first order differential
equations for charge vortices when the inertial term _p is
assumed to be small:

dr

dt
¼ 1

n@QC

ẑ� FC; (6)

motion is perpendicular to applied forces. The vortex
velocity required by Eq. (6) turns out to equal the back-
ground flow speed, in accordance with Descartes’s con-
ception of planetary motion. The motion of charge vortices
is determined once their initial positions are given.

In contrast, a spin vortex behaves in a Newtonian way, as
long as the condensate has zero magnetization. First, in the
absence of spin current, Eq. (5) implies ‘‘Newton’s first law
of spin vortices’’: a spin vortex in a charge current can
move at any constant speed. There is no lift to push the
vortex off course because the component vortices rotate in
opposite directions [see Fig. 1(c)]. Second, if there is a spin
current the lift forces on the component vortices from the
counterpropagating flows add to produce a nonzero FS.

The solution to _p ¼ 0, jvj ¼ jFSj
@QSMz

, does not make sense if

Mz ¼ 0. Therefore the inertial term cannot be neglected
and ‘‘Newton’s second law of spin vortices’’ results: a spin-
vortex in a spin current must accelerate, at a rate propor-
tional to FS. One can introduce the vortex mass mv by
assuming that

p ¼ mv _r; (7)

at least at low speeds. Hence, the equation of motion
prescribes the acceleration:

mv

d2r

dt2
¼ FS: (8)

These Newton’s laws describe spin vortices in condensates
of any spin, as long asMz ¼ 0 [10]. The expression for the
spin force is analogous to electrostatics:

F S12 ¼ @
2qz
M

QS1QS2r̂12
r12

: (9)

Phase space and equations of motion.—The equation of
motion of the condensate

i@
@c

@t
¼ � @

2r2

2M
c þ @V

@c y (10)

has the form of Hamilton’s equations, with c and c y
conjugate variables. [See Eq. (1) for the definition of V .]
The laws of motion for a set of charge and spin vortices
follow from this; their dynamics can be described by
differential equations which are also first order in time.
One can concentrate on a few variables u� describing the
state of just the vortices, and not other details of the wave
functions. The equations for these variables also have the
form of Hamilton equations, coming in conjugate pairs.
The necessary variables for N charge vortices are their

2N spatial coordinates, and the first order differential
equation for the evolution of these variables is Eq. (6).
This equation fits into the framework of classical mechan-
ics, even though there are no momentum coordinates. The
y coordinate of each vortex (times nh) acts as the momen-
tum conjugate to x [11]. Consequently, charge-vortex gases
can have strange thermodynamics [12,13].
The phase space for N spin vortices must be 4N dimen-

sional, since the equations of motion are second order.
What can the extra 2N variables be? For ordinary objects,
they are momenta. But momenta exist only in abstract
space: a photograph of a ball in the air does not reveal its

PRL 103, 080603 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

21 AUGUST 2009

080603-2



destination. A spin vortex’s speed is independent of its
position as well. But because Eq. (10) is a first order
differential equation with respect to time, a single photo-
graph of a vortex must have a tell-tale feature which can be
used to deduce the vortex’s velocity.

To guess what this feature is, note that the lift forces on
the component vortices of a moving spin vortex pull them
in opposite directions, but the components are restrained
from drifting apart completely (see below). Thus, the
stretching of the spin vortex increases with its speed (see
Fig. 2). The momentum p can be discerned from a snap-
shot if it is proportional to the stretching:

p ¼ �hn1ẑ�D; (11)

where D points between the component vortices. This
quantity is conjugate to the position. To understand this
intuitively [14], suppose the component vortices are point-
vortices with conjugate x and y coordinates, like charge
vortices. If the one with circulation� h

m is at (x�, y�), then
the Poisson brackets are fx�; y�g ¼ � 1

n1h
. Short calcula-

tions using this show that the center of mass x is conjugate
to px ¼ n1hDy ¼ n1hðyþ � y�Þ (i.e., fx; pxg ¼ 1) rather

than to y. For realistic, spread-out vortices, D has to be
m
n1h

RR
d2urðcurlJCÞz, the dipole moment of the vorticity

(see [15]).
To derive the conjugacy relations in general, one has to

evaluate the matrix of Poisson brackets between all pairs of
variables. The entries in the inverse of this matrix (the
‘‘Lagrange brackets’’) can be expressed by integrals,

½u;v�¼�2@=RR@c yðr;u;vÞ
@u

@c ðr;u;vÞ
@v d2r where c ðr;u; vÞ is

parameterized by the coordinates (u, v) of interest.
Stokes’s theorem implies that ½x; y� ¼ �nm�C, where �C

is the circulation of JC. Hence, for example, x and y are
conjugate for a charge vortex, but not for a spin vortex at

zero magnetization since �C ¼ Mz

nmQS ¼ 0.

Since r and p are conjugate, the Hamilton equation for _p

gives the force law [16]. The Hamilton equation _r ¼ @H
@p

relates the canonical momentum (the vortex distortion) to
actual motion. Only the core energies EcðDÞ of the vortices
depend on the distortion, so v ¼ @EcðDÞ

@p .

Confinement and the vortex mass.—Spinor conden-
sates can have higher-order symmetries that do not occur
for ordinary mixtures (e.g., of two different atoms) [17].
But the higher symmetry is not the only special thing
about spinor condensates. Unlike in a mixture, the atomic
states can turn into one another in a spinor condensate, as
long as the angular momentum does not change: 1þ
�1 $ 0þ 0. This coherent-spin flipping is included
among the interaction terms in the potential energy
[Eq. (1)], as can be seen by writing them in the form

V int ¼ 1
2

P
m1;m2

�m1m2
:jc m1

j2jc m2
j2:þ 2�<ðc y

1 c
y
�1c

2
0Þ,

where �m1m2
, functions of � and �, describe the inter-

actions between pairs of spin species.
Coherent spin flipping locks the phases of the spinor

components together [18,19] and this keeps the two parts
of a spin vortex bound together. A nonzero phase � ¼
ð�1 þ ��1 � 2�0Þ costs energy

E flip ¼ 2�n0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n�1

p
cos�; (12)

where the spin-dependent interaction parameter � is nega-
tive. Since the energy cannot depend on a phase unless
particle numbers are not conserved, it makes sense that this
comes from the spin-flipping reactions.
The energy of a stretched spin vortex is

E� j�jn2D2: (13)

By reinterpreting this as kinetic energy p2

2mv
with the help of

Eq. (11) we now obtain the vortex mass

mv � @
2

�
�M

w

�a
: (14)

The second expression is obtained by relating � to the
width of the condensate w in the z direction and the
scattering-length difference �a [19]. In this case, mv is
of the same order as the mass of the atoms in the vortex
core, nl2mM, where lm is the size of the core of a spin

vortex, about
ffiffiffiffiffiffiffi
w

n�a

p
. For rubidium in a 1 �m wide trap with

�a� 1 �A, mv � 10�21 kg. I hope to calculate the numeri-
cal coefficient in Eq. (14) and its dependence on q

n0j�j in a

future article [20].
Measuring the mass.—Now consider the consequences

of spin vortices’ inertial motion. Spin vortices of opposite
signs can orbit around one another whereas opposite
charge vortices always push each other along parallel lines
[1]. As for planets, the orbits have different shapes depend-
ing on the initial momenta of the vortices. When the two
vortices move on a circle the period is proportional to the
circle’s radius. Balancing the attraction Eq. (9) against the
centrifugal force j _pj ¼ p! gives

vpðvÞ ¼ 2�n1@
2

M
; (15)

determining the speed v ¼ vcirc of the vortices. For any
orbit radius vcirc is the same. Measuring vcirc helps to

FIG. 2. Seeing the momentum of a spin vortex. The phases of
c�1 increase in the directions of the arrows. The component
vortices are pulled apart by the lift force to a distance Dy / px.

The phase locking produced by the spin-dependent interaction
limits the stretching, since the phase � is nonzero over the region
indicated by the ellipse.
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estimate the vortex mass, by assuming mv ¼ pðvcircÞ
vcirc

, but

vcirc is too large for the dispersion to remain linear.
A more accurate way to measure the mass of spin

vortices is to observe their motion when the magnetization
is not zero, but is small. Then the lift force due to the
vortex’s motion looks like the Lorentz force from a small
magnetic field, Beff ¼ �Mz@ẑ. A single vortex will there-
fore follow cyclotron orbits with the period

	 ¼ mv

@Mz

: (16)

If the magnetization is 5% and the other condensate pa-
rameters are as above, the period comes out as 0.3 sec.

Limiting velocity.—A final idea for an experiment is to
study the motion of a rapidly moving vortex. Such a
measurement allows hypothetical inhabitants of the super-
fluid to measure the velocity of their ‘‘ether.’’ Spin vortices
can move inertially only up to a certain velocity relative to
the condensate.

Imagine pushing a spin vortex, starting from rest. After
a certain amount of acceleration, the vortex may start to
oscillate, so that all the additional work goes into pro-
ducing spin waves. Alternatively, the vortex may remain
stable. Then the work goes into stretching the components
apart until the vortex becomes needle-shaped. The velocity
is bounded in this case as well. E is proportional to the
vortex lengthD / p and a linear dispersion implies a finite
velocity.

Spin-wave dissipation seems to be the fate of a vortex in
a condensate with rotationally symmetric interactions [of
form 1

2�ðc yc Þ2 þ 1
2�ðc ySc Þ2]. This conclusion is based

mainly on numerical solutions of the Gross-Pitaevskii
equations for steadily moving vortices with � ¼ �0:3�,
q ¼ 0:5� (see Fig. 3). The computer did not find solutions

past vc ¼ 0:65
ffiffiffiffi
�
M

q
, which is close to the spin-wave speed.

Experimental conditions can be adjusted so that a
stretched vortex does not radiate energy. The traps for the
three Sz states should be displaced into parallel planes in
order to make the three spin states more independent. (The
clouds still have to overlap to allow spin flipping.) The

component vortices can then separate to great distances,

approaching the speed 4n0
�

ffiffiffiffiffiffi
j�j
nM

q
[20].

To summarize, each charge vortex has only spatial de-
grees of freedom because the lift force overcomes the
inertia. In contrast, spin vortices in an unmagnetized con-
densate behave like classical particles because they are
made up of oppositely rotating vortices whose total
Magnus force cancels. The internal stretching between
these components give rise to the mass. Spin vortices at
low speeds have 4 degrees of freedom: the center of mass
coordinates and the momenta which are proportional to the
distortion of the vortex core. The vortices betray their
composite origin when accelerated sufficiently.
I have very much enjoyed conversations with Ryan

Barnett, Eugene Demler, Markus Greiner, and Ashvin
Vishwanath. Markus Greiner started me on this research
by asking how to start a vortex moving in a spinor con-
densate. This research was supported by ARO Grant
No. W911NF-07-1-0576.
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FIG. 3. The energy density around vortex cores moving at v ¼
0, :45

ffiffiffiffi
�
M

q
, with rotationally symmetric interaction parameters

(see text). These profiles are obtained from numerical steady-
state solutions to the two-dimensional Gross-Pitaevskii equation,
Eq. (10). Blacker regions have greater energy densities. The
small arrows indicate the roots of c 1 and c�1.
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