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We present numerical calculations, simulation results, and analytical considerations for the frequency-

dependent dielectric constant of single-file water in narrow nanopores, described by a recently developed

dipole lattice model. We find Debye relaxation over all length scales with relaxation times that strongly

depend on pore length. This behavior is analyzed in terms of the dynamics of orientational defects leading

to simple quantitative expressions for the static dielectric susceptibility and the relaxation time in the

limits of short and long pores. Based on these formulas, we suggest how the predicted macroscopic order

of nanopore water can be probed via dielectric spectroscopy and explain how the excitation energy,

diffusion constant, and effective interaction of the defects that destroy the order can be extracted from

such measurements.
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Inside narrow pores with subnanometer diameter, water
forms single-file chains of hydrogen bonded molecules
that are orientationally ordered over long distances [1,2].
The properties of nanopore water related to this one-
dimensional (1D) structure are not only essential for living
systems, where they determine water and ion transport
across membranes, they also have implications for techni-
cal applications [3,4]. In particular, carbon nanotubes
(CNTs) are promising building blocks for filtration, sepa-
ration, and desalination devices as well as hydrogen fuel
cells [5–8].

The orientational order arising from the particular inter-
actions between water molecules strongly depends on
length. Chains shorter than 0.1 mm are predominantly
orientationally ordered with all water molecules pointing
in the same direction [2]. Flips of the whole chain between
the two equivalent states with opposite orientation are rare
but do occur occasionally via the migration of hydrogen
bonding defects. These defects consist of a molecule that
either accepts two hydrogen bonds without donating any
(D defect) or donates two hydrogen bonds without accept-
ing any (L defect) and arise where chain segments with
opposite orientation meet [8]. Chains longer than 0.1 mm
are orientationally disordered and are composed of ordered
domains separated by hydrogen bonding defects acting as
domain walls. In such disordered chains, L and D defects
alternate and flip the orientation of water molecules as they
diffuse along the chain.

To date, these remarkable properties of nanopore water
have been studied in detail using analytical theory and
computer simulations but lack experimental verification.
To remedy this situation, we investigate the response of
nanopore water to a time-dependent homogeneous electric
field in the direction of the tube axis and suggest how water
chains inside pores can be probed experimentally by di-
electric spectroscopy. The theoretical basis for our analysis
is provided by a 1D dipole lattice model that accurately

reproduces the free energetics of single-file water and
permits extensive simulations despite the large length and
time scales characteristic for the structure and dynamics of
such chains [2,8,9]. This model provides the framework to
determine, from dielectric spectroscopy experiments, the
fundamental properties of nanopore water, namely, the
excitation energy, the diffusion constant, and the effective
interaction of hydrogen bonding defects.
In our model, water molecules are represented by di-

poles with magnitude � arranged on a 1D lattice with
spacing a. The dipoles point either ‘‘up’’ or ‘‘down’’ the
pore axis and are orthogonal to it in the case of defect
molecules. It can be shown rigorously that the energy of
the system, which is given by the sum of all dipole-dipole
interactions, can be written as a sum of Coulomb-like
interactions qiqja

�1�ðjri � rjja�1Þ=ð4�"0Þ of effective

charges qi ¼ ��=a carried by the defects and the chain
ends, respectively [2,9]. Here jri � rjj is the distance

between effective charges qi and qj, and "0 is the vacuum

permittivity. The distance dependence of the interaction is

given by �ðxÞ ¼ ½2c ð1ÞðxÞ þ xc ð2ÞðxÞ� � 1=xþO½x�3�,
where c ðiÞðxÞ are polygamma functions. In this charge
representation, which provides a physically appealing
and transparent picture of the chain energetics, defects
are formed by pairs of charges of equal magnitude which
are negative for the L and positive for the D defect. For
a ¼ 0:265 nm and � ¼ 1:9975 D, as obtained from mo-
lecular dynamics simulations, the effective defect charges
have a magnitude of 2�=a � 0:31 e, and chain end points
carry charges of half this magnitude [2].
We start our analysis by considering the linear response

of the water wires to static electric fields as quantified by
the static susceptibility �, which is related to the equilib-
rium fluctuations of the total dipole moment M in the axis
direction: � ¼ �hð�MÞ2i=ð"0NvÞ. Here �M ¼ M� hMi
is the deviation of the total dipole from its canonical
average, � ¼ 1=kBT is the reciprocal temperature, v is
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the volume per particle, and N is the number of molecules.
Susceptibilities determined using Monte Carlo simulations
[9] for two temperatures T ¼ 298 K and T ¼ 387 K are
depicted in Fig. 1 as a function of chain length N. To
compute � from the dipole fluctuations, a volume per
molecule of v ¼ 106 nm3 was used, corresponding to a
membrane of uncorrelated water chains with an experi-
mentally feasible pore density of 2:5� 1011 cm�2 as re-
cently realized in a CNT membrane with sub-2-nanometer
pore diameters [10]. (Note, however, that pores of this size
are still slightly to wide to support single-file water chains.)
The � vs N curves show two distinct regimes. While for
short chains the susceptibilities grow linearly with chain
length N, they saturate at large values in the long chain
limit. For T ¼ 298 K, the susceptibility � � 8000, which
is about 100 times larger than the susceptibility of bulk
water at ambient conditions (� � 80) even though the
water density in the membrane is more than 3000 times
smaller than that in the bulk.

The two different regimes of �ðNÞ are a consequence of
the distinct nature of dipole fluctuations in short and long
water chains. For small N, the chains are predominantly
ordered with all dipoles pointing either up or down the tube
axis such that the total dipole takes only the values M ¼
�N� [11]. Consequently, hð�MÞ2i ¼ N2�2 leading to

�shortðNÞ ¼ ��2

"0v
N: (1)

For large N, the order is destroyed by orientational defects
as expected from the statistical mechanics of 1D systems,
and the dipole fluctuations are determined by the defect
statistics [2]. Since for ambient conditions the defect ex-
citation energy ED is large compared to the thermal energy
kBT, the defect density is low, leading to a large average
defect distance of the order of l � a expð�EDÞ. Therefore,
the defect interactions are negligible, and the defects are
uncorrelated to a very good approximation. In this limit,

the dipole model is isomorphic to the 1D Ising model with
orientational defects corresponding to domain walls. This
correspondence is established by choosing a coupling con-
stant of J ¼ ED=2 in the Ising case, as obtained by equat-
ing the domain wall energies in the two models. From the
analytical solution of the 1D Ising model [12], one obtains
hð�MÞ2i ¼ N2�2e�ED yielding the dielectric susceptibility
for large N:

�long ¼ ��2

"0v
e�ED : (2)

The predictions of Eqs. (1) and (2), shown in Fig. 1,
reproduce the numerical results very well in the short and
long chain limits, respectively. The chain length, at which
the crossover between these two regimes occurs, can be
estimated by equating Eqs. (1) and (2), yielding N ¼
expð�EDÞ � 7� 105 for T ¼ 298 K. At this system
size, the chain contains a single defect on average.
Using Eqs. (1) and (2), one can extract the defect exci-

tation energy �ED and the magnitude � of the dipole
moment from measurements of the static susceptibility as
a function of N. Further information can be obtained by
analyzing the response of the chain to a time-dependent
electric field as quantified by the frequency-dependent
complex dielectric constant, related to the dipole autocor-
relation function hMð0ÞMðtÞi via the fluctuation-dissipation
theorem [13].
As shown earlier [7,8], the dynamics of water chains is

essentially determined by the diffusive migration of ori-
entational defects under the influence of their mutual in-
teractions. To model this kind of dynamics, we incorporate
the motion of defects as a discrete time Markov process
into our lattice model. The algorithm works as follows. In
each step, one dipole is selected at random with uniform
probability. The dipole is then subjected to a trial move,
which is accepted or rejected depending on the energy
change according to the Metropolis rule [14]. The possible
trial moves are designed to mimic the natural, diffusive
motion of defects and depend on the position and orienta-
tion of the selected dipole. If the dipole happens to be a
defect, it is displaced by one lattice site to the left or right
with equal probability.
Depending on the position of the defect, this transla-

tional move may result in its annihilation at the chain end
or its recombination with a defect of opposite charge. For a
dipole at a chain end, the trial move consists in the gen-
eration of a single defect, while for a dipole in the interior
of an ordered domain, the generation of a defect pair is
attempted. This pair consists of an L and a D defect
separated by an intermediate dipole. After one sweep,
consisting of N trial moves, time is advanced by the incre-
ment �t. Since the generation probability for a defect pair
away from other defects is known analytically, an event-
driven version of this algorithm can be implemented,
which leads to speedups of several orders of magnitude
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FIG. 1. The static dielectric susceptibility as a function of the
tube length (top axis) and number of molecules (bottom axis).
Symbols indicate simulation results for T ¼ 298 K (squares)
and T ¼ 387 K (circles). Lines indicate approximations for short
(solid) and long (dashed) pores.

PRL 103, 080601 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

21 AUGUST 2009

080601-2



and makes the simulations presented here possible [15].
Simulation time is related to real time by considering the
diffusive motion of a single defect along the dipole chain.
From molecular dynamics simulations it is known that
orientational defects migrate with a diffusion constant of
about D ¼ 0:04 nm2=ps [8] leading to a time increment of
�t ¼ a2=2D � 0:88 ps.

Using this algorithm, we have computed dipole autocor-
relation functions hMð0ÞMðtÞi for various system sizes and
temperatures. In all size regimes, we observe Debye be-
havior for times longer than several hopping times �t; i.e.,
the autocorrelation functions decay exponentially:

hMð0ÞMðtÞi ¼ hM2ie�t=�. This is in contrast to the dielec-
tric response of water clusters encapsulated in wider
single-walled CNTs, which display Kohlrausch-William-
Watts relaxation [16]. For Debye behavior, the complex
dielectric constant is completely determined by hM2i and �
[13]. Relaxation times � of the dipole autocorrelation
functions obtained as a function of N from fits to the
simulation data are shown in Fig. 2 for two temperatures.
Note that the frequencies corresponding to the observed
relaxation times lie within the spectrum accessible in di-
electric spectroscopy experiments. For both temperatures,
the relaxation time grows monotonically with system size,
and three distinct regimes can be identified. For short
chains, the relaxation time grows sublinearly with N.
Then, for intermediate chain lengths, the relaxation time
increases linearly, before it converges to a constant value in
the long chain limit. For these three regimes, which reflect
different relaxation modes for the total dipole moment,
simple expressions for �ðNÞ can be obtained as discussed
in the following.

The dynamics of short chains consists of long perma-
nences in the two perfectly ordered states with dipoles
pointing up or down the tube axis, punctuated by rapid
transitions between them occurring via defect migration.
The resulting two-state behavior is the origin of exponen-

tial decay of the dipole autocorrelation function. In this
size regime, the probability of finding more than one defect
is negligible such that the total dipole moment of the chain
is uniquely related to the defect position. Therefore, we can
model the dipole dynamics as a nonlinear one-step hopping
process (NOSHP) [17]. Here a defect located at site n hops
to the neighboring sites n� 1 and nþ 1 with transition
rates rn and gn, respectively. These transitions rates are
related to each other by the requirement of detailed balance
gn=rnþ1 ¼ expð���FnÞ, where �Fn ¼ Fnþ1 � Fn and
Fn is the free energy of the defect located at site 1< n<
N. The free energy with respect to the fully ordered chain
is given by Fn ¼ ED � �½�ðn� 1Þ þ�ðnÞ þ�ðN �
nÞ þ�ðN � nþ 1Þ � 2�ðNÞ� � kBT ln2, where � ¼
�2=ð4�"0a3Þ is the energy scale for the dipolar interac-
tions. The term kBT ln2 in the free energy accounts for the
two reaction channels available for the chain flip—one for
the diffusion of an L defect and one for that of a D defect.
In the NOSHP the relaxation time is given by

�shortðNÞ ¼ 1

2

XN�1

	¼1

g�1
	 e�F	

X	

�¼1

e��F�: (3)

Relaxation times determined from Eq. (3) for rates corre-
sponding to Metropolis dynamics, gn ¼ ð2�tÞ�1 �
minf1; expð���FnÞg, are shown in Fig. 2 and agree well
with the simulation results in the two-state regime. Solving
Eq. (3) for rates corresponding to Glauber dynamics [18],
gn ¼ �t�1½1þ expð��FnÞ��1, yields essentially identical
results indicating that the results do not depend on the
details of the dynamics. Since Eq. (3) depends on the
energy constant �, it can be fitted to experimental results
to determine the magnitude � of the dipole moment.
A simpler expression for the relaxation time can be

obtained by approximating the free energy landscape felt
by the migrating defect by a rectangular profile of width
N � 2 and height FN=2. With the barrier height given by

FN=2 � ED � 6�=N � kBT ln2, we solve Eq. (3) analyti-

cally obtaining

�shortðNÞ � e�ðED�6�=NÞ Na2

4D
; (4)

which reproduces simulation results for small chain
lengths qualitatively (see Fig. 2). The term proportional
to 1=N in the exponential of Eq. (4), which causes the
curvature of the � vs N curves for short chains, is a
reflection of the Coulomb-like attraction of the defect at
the chain center with the end points of the chain, thus
providing a way to verify this interaction experimentally.
For increasing chain length, this attraction decreases and
can be neglected for sizes N * 1000. Then the relaxation
time increases linearly with chain length with a slope that
depends on the defect energy.
The linear behavior of �ðNÞ, a manifestation of the two-

state behavior with constant barrier height but growing
barrier width, persists until a size is reached where more
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FIG. 2 (color online). The relaxation time as a function of the
tube length (top axis) and number of molecules (bottom axis).
Simulation results are shown for T ¼ 298 K (squares) and T ¼
387 K (circles). Also shown are relaxation times calculated in
the short and long chain limits.
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than one defect is present in the chain on average. The
crossover to this regime occurs at N � expð�EDÞ. For
large tube lengths and uncorrelated defects, our model is
dynamically isomorphic to the kinetic Ising model in one
dimension. In this case, the autocorrelation function of the
total magnetization of the Ising model decays exponen-
tially with a relaxation time of � ¼ �tð1� 
Þ�1, where

 ¼ tanhð�EDÞ [18]. For large defect energies, Glauber’s
expression simplifies to

�long � e2�ED
a2

4D
: (5)

Thus, in the large system limit the relaxation time con-
verges to a constant value in good agreement with the
relaxation times found in our dynamical Monte Carlo
simulations. By combining Eqs. (4) and (5), one can use
the size dependence of the relaxation time in the linear and
constant regime to determine the defect energy ED ¼
�kBT lnðs=�longÞ, where s is the slope of the relaxation

time as a function of N in the linear regime. The diffusion
constant of the defects is then given by D ¼ a2�long=ð4s2Þ.

Note that in the above analysis we have assumed that D
and L defects have the same defect energy ED and migrate
with the same diffusion constant D. Simulations indicate
that this assumption holds to a considerable degree, but
nevertheless differences exist [8,19–21]. Thus, the proce-
dure suggested here yields average values of ED and D
lying between the corresponding true values for the D and
L defects. However, large differences in the defect energy
lead to deviations from the predicted behavior in the two-
state regime that could be detected in experiments [15].

In summary, we have clarified how dielectric spectros-
copy can serve to probe the properties of water confined to
the interior of narrow pores. Our computer simulations
demonstrate that the dielectric response of such nanopore
water follows Debye behavior. We find that the time evo-
lution of the total dipole moment of a 1D water chain is
determined by the diffusive dynamics of essentially un-
correlated defects and derive simple and accurate formulas
for the susceptibility and relaxation time as a function of
chain length. These expressions, verified in extensive
simulations, permit one to extract fundamental molecular
information such as the energy, diffusion constant, and
interactions of defects from dielectric relaxation spectra.

The experimental studies suggested in this Letter may be
carried out using membranes of nonmetallic CNTs with
subnanometer diameter. Compared to current CNT mem-
branes [5], meeting this experimental challenge will re-
quire further reduction in pore diameter and selection of
appropriate chirality. Other possibilities to observe single-
file dipole chains include water or other dipolar hydrogen
bonding molecules confined in boron-nitride tubes [20,22]
or silanized channels across silicon wafers [23] as well as
confined colloidal particles with permanent magnetic or
electric dipole moments [24–26]. Because of the strong

length dependence of the dielectric response of 1D water
chains, with the static dielectric susceptibility and the
relaxation time spanning orders of magnitude, water-filled
CNTs may serve as capacitors, e.g., in sensing devices
[27,28].
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