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We investigate the possibilities and limitations of passive Hamiltonian protection of a quantum memory

against depolarizing noise. Without protection, the lifetime of a single qubit is independent of N, the

number of qubits composing the memory. In the presence of a protecting Hamiltonian, the lifetime

increases at most logarithmically with N. We construct an explicit time-independent Hamiltonian which

saturates this bound, exploiting the noise itself to achieve the protection.
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A cornerstone for the majority of applications in
quantum information processing is the ability to reliably
store quantum information, protecting it from the ad-
versarial effects of the environment. Quantum Error
Correcting Codes (QECC) achieve this task by using a
redundant encoding and regular measurements which al-
low for the detection, and subsequent correction, of errors
[1–4]. An alternative approach uses so-called protecting
Hamiltonians [5,6], which permanently act on the quantum
memory and immunize it against small perturbations. Its
most attractive feature is that, in contrast to QECC, it does
not require any periodic action on the quantum memory,
just encoding and decoding operations at the times of
storing and retrieving the information. Whereas this ap-
proach may tolerate certain types of noise [7,8], it is not
clear if it is suitable in the presence of depolarizing noise,
something which QECC can deal with.

In this Letter, we give a complete answer to this ques-
tion. More specifically, we consider the situation where a
logical qubit is encoded in a set of N qubits and allowed to
evolve in the presence of depolarizing noise and a protect-
ing Hamiltonian. The goal is to find the strategy delivering
the longest lifetime, �, after which we can apply a decoding
operation and reliably retrieve the original state of the
qubit. By adapting ideas taken from [9], it is established
that the lifetime cannot exceedOðlogNÞ. An analysis of the
case in which no protecting Hamiltonian is used presents
markedly different behavior depending on whether we
intend to store classical or quantum information. Finally,
we construct a static protecting Hamiltonian that saturates
the upper bound ��OðlogNÞ. To this end, we first show
how to achieve this bound using a time-dependent
Hamiltonian protection which emulates QECC. We then
introduce a clock gadget which exploits the noise to mea-
sure time—similar to radiocarbon dating—thus allowing
us to simulate the previous time-dependent protection
without explicit reference to time.

We consider a system of N qubits, each of which is
independently subject to depolarizing noise at a rate r. The
total state evolves as

_�ðtÞ ¼ �i½HðtÞ; �ðtÞ� � r

�
N�ðtÞ � XN

n¼1

trnð�ðtÞÞ � 1n

2

�
:

(1)

Furthermore, we shall allow for an arbitrary encoding of
the initial state as well as a final decoding procedure to
recover the information.
Protection limitations.—Using purely Hamiltonian pro-

tection, a survival time of ��OðlogNÞ is the maximum
achievable. Intuitively, this is due to the fact that the
depolarizing noise adds entropy to the system at a constant
rate, while any reversible operation (i.e., Hamiltonian or
unitary evolution) will never be able to remove this entropy
from the system. Rather, in the best case, it can concentrate
all the entropy in a subsystem, keeping the remaining part
as clean as possible. This entropic argument was first
presented in [9], where the authors investigated the power
of reversible computation (both classical and quantum)
subject to noise in the absence of fresh ancillas. To this
end, they considered the information content Ið�Þ ¼ N �
Sð�Þ of the system, with N the number of qubits and
Sð�Þ ¼ �trð�log2�Þ. The information content upper
bounds the number of classical bits extractable from �,
and thus ultimately also the number of qubits stored in �.
While the original statement about the decrease of Ið�Þ is
for discrete-time evolution, it can be straightforwardly
generalized to the continuous time setting of Eq. (1), where
it states that

dIð�Þ
dt

� �rIð�Þ;

which yields that the information of the system is smaller

than 1
2 after a time lnð2NÞ

r .

Having established an upper bound for the scaling of �
with N, let us analyze whether this bound can be reached
under different circumstances. We start with the simplest
case where we use no Hamiltonian protection (i.e., H ¼ 0)
and show that � is independent of N; that is, no quantum
memory effect can be achieved. For that, we note that the
effect of Eq. (1) on each qubit may be expressed in terms of
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a depolarizing channel

E tð�Þ ¼ �ðtÞ�þ ½1� �ðtÞ�1
2

where �ðtÞ ¼ e�rt. For t � tcl, where �ðtclÞ ¼ 1
3 , the re-

sulting channel is entanglement breaking [10]. This re-
mains true if one incorporates encoding and decoding
steps. It is simple to prove that for entanglement breaking
qubit channels, the average fidelity [11] is upper-bounded
by 2=3. Thus, the lifetime � is smaller than tcl ¼ ln3

r , which

is independent of N.
The previous argument does not apply to classical in-

formation, for which an optimal storage time that is loga-
rithmic in N may be achieved. The classical version of Eq.
(1), taking HðtÞ � 0, is a system of N classical bits subject
to bit flipping noise (each bit is flipped at a rate r=2). In this
case, encoding in a repetition code, and decoding via
majority voting, yields an asymptotically optimal informa-
tion survival time OðlogNÞ. Using optimal estimation [12]
and this classical protocol in the encoding phase, the bound
2=3 may be asymptotically reached for the quantum case.

Time-dependent protection.—We will now use the ideas
of QECC to build a simple circuit based model that reaches
the upper bound on the protection time. This model as-
sumes that unitary operations can be performed instanta-
neously, which is equivalent to having a time-dependent
protecting Hamiltonian with unbounded strength; we will
show how to remove both requirements later on. Instead of
using a repetition code, we encode the qubit to be protected
in an l level concatenated QECC [2–4] (i.e., l levels of the
QECC nested into each other), which requires N ¼ dl

qubits, where d is the number of qubits used by the code.
Each level of the QECC can provide protection for a
constant time tprot < tcl, and thus, after tprot, one layer of

decoding needs to be executed. Each decoding consists of a
unitary Udec on each d-tuple of qubits in the current
encoding level; after the decoding, only one of each of
the d qubits is used further (Fig. 1). The total time that such
a concatenated QECC can protect a qubit is given by
tprotl ¼ tprotlogdN �OðlogNÞ, as in the classical case.

Time-independent protection.—In the following, we
show that the same OðlogNÞ protection time which we
can achieve using a time-dependent protection circuit can
also be obtained from a time-independent protecting

Hamiltonian. The basic idea of our construction is to
implement the time-dependent Hamiltonian presented be-
fore in a time-independent way. To this end, a clock is built
which serves as control. The time-independent version
performs the decoding gates conditioned on the time esti-
mate provided by the clock. In order to obtain a clock from
(1) with a time-independent H, we will make use of the
noise acting on the system: we add a number, K, of ‘‘clock
qubits’’ which we initialize to j1i�K and let the depolariz-
ing noise act on them. The behavior of the clock qubits is
thus purely classical; they act as K classical bits initialized
to 1 which are being flipped at a rate r=2. Thus, the
polarization k, defined by the number of ‘‘1’’ bits minus
the number of ‘‘0’’ bits has an average expected value of
�kðtÞ ¼ Ke�rt at time t. Conversely, this provides the time
estimate

~tðkÞ ¼ min

�
lnðK=kÞ

r
; tmax

�
: (2)

Here, tmax is the maximum time for which we expect that
estimate to be reliable, which depends on K and the
precision of the estimate cf. (5) below. Particular realiza-
tions of this random process of bit flips can be described by
a polarization trajectory kðtÞ. Good trajectories are defined
to be those such that

jkðtÞ � �kðtÞj<K1=2þ� (3)

for all 0 � t � tmax. For appropriate parameters tmax and
0< �< 1

2 , the following theorem states that almost all tra-

jectories are good and can provide accurate time estimates.
Theorem (Depolarizing clock).—For K � 16, good tra-

jectories have a probability

P½kðtÞ good traj:� � 1� K
rtmax þ exp½�3K2�=8�

exp½K2�=8� : (4)

Furthermore, for any good trajectory kðtÞ, the time estimate
~t returned by the clock will differ from the real time t by at
most

�

2
:¼ 1

rK1=2��
ertmax � j~t½kðtÞ� � tj: (5)

(For fixed �, this implies that tmax will scale logarithmi-
cally with the number of qubits.)
Note that the theorem does not simply state that any time

evolution will be outside (3) for an exponentially small
amount of time (which is easier to prove), but that there is
only an exponentially small number of cases in which (3) is
violated at all. Although the former statement would in
principle suffice to use the clock in our construction, the
stronger version of the theorem makes the application of
the clock, and, in particular, the error analysis, more trans-
parent and will hopefully lead to further applications of the
clock gadget.
Proof.—To prove the theorem, note that each of the bits

undergoes an independent exponential decay so that the
total polarization is the sum of K identical independent
random variables. We can thus use Hoeffding’s inequality

FIG. 1. Decoding a nested QECC. The ‘‘discarded’’ qubits
carry most of the entropy and are not used further.
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[13] to bound the probability of finding a polarization far
from the expected average value �kðtÞ,

Pr½jkðtÞ � �kðtÞj � K1=2þ�� � 2e�ðK2�=2Þ: (6)

This already implies that most of the trajectories violate
(3) for no more than an exponentially small amount of
time. To see why (6) implies that most trajectories are good
trajectories, we bound the average number of times a
trajectory leaves the region (3) of good trajectories. Since
a nongood trajectory must leave (3) at least once, it is also
an upper bound on the probability of nongood trajectories.
Hence, it suffices to consider the average rate RðtÞ at which
processes leave (3), and integrate over t to obtain a bound
on the probability of trajectories which are not good.

The rate at which a process leaves the set of good tra-
jectories has two sources, as illustrated in Fig. 2: First, the
system can undergo a spin flip, thus leaving the region
defined by (3) vertically (rate Rv), and second, it can leave
it horizontally if the time t passes the maximum time
allowed by (3) for the current value kðtÞ of the polarization
(rate Rh). A vertical leave can occur only if jkðtÞ� �kðtÞj�
K1=2þ��2�K1=2þ�=2, provided K�16 (a spin flip
changes kðtÞ by �2). Equation (6) thus gives an average
bound

RvðtÞ � Kre�K2�=8:

A horizontal leave can only occur at discrete times extrem-
izing (3),

t 2 T ¼ ft: �kðtÞ þ K1=2þ� 2 Ng;
and the probability of a trajectory fulfilling kðtÞ ¼ �kðtÞ þ
K1=2þ� may again be bounded using (6), such that

RhðtÞ � 2e�K2�=2
X
�2T

�ðt� �Þ:

The inequality (4) follows immediately by integrating
RhðtÞ þ RvðtÞ from 0 to tmax.

Assuming that kðtÞ corresponds to a good trajectory, the
accuracy of the time estimate (2) may be bounded by

applying the mean value theorem to �k:

j~t½kðtÞ� � tj ¼ j �kf~t½kðtÞ�g � �kðtÞj
j �k0ðtintermÞj

� K�

r
ffiffiffiffi
K

p ertmax :

h
Clock dependent Hamiltonian.—Let us now show how

the decoding circuit can be implemented using the clock
gadget. The circuit under consideration consists of the

decoding unitaries Ul;k
dec (decoding the k’th encoded qubit

in level l, acting on d qubits each); after a time interval tprot
(the time one level of the code can protect the qubit

sufficiently well), we perform all unitaries Ul;k
dec at the

current level l—note that they act on distinct qubits and
thus commute. Each of these unitaries can be realized by

applying a d-qubit Hamiltonian Hl;k
dec for a time t ¼ tdec.

Thus, we have to switch on all the Hl;	
dec for t 2 ½tl; tl þ

tdec�, where tl ¼ ltprot þ ðl� 1Þtdec.
In order to control the Hamiltonian from the noisy

clock, we define clock times kl;on ¼ b �kðtlÞc and kl;off ¼
d �kðtl þ tdecÞe, and introduce a time-independent
Hamiltonian which turns on the decoding Hamiltonian
for level l between k 2 ½kl;on; kl;off�,

H ¼ X
l

ðHl;1
dec þ 	 	 	 þHl;dL�l

dec Þ ��l: (7)

The left part of the tensor product acts on the N code
qubits, the right part on the K clock (qu)bits, and

�l ¼
Xkl;off

k¼kl;on

X
wx¼ðkþNÞ=2

jxihxj;

where x is an N-bit string with Hamming weight wx. The
initial state of the system is, as for the circuit construction,
the product of the encoded qubit in an l-level concatenated
code and the maximally polarized state j1i�K on the clock
gadget.
Error analysis.—We now perform the error analysis for

the protecting Hamiltonian (7). In order to protect the
quantum information, we will require that the error proba-
bility per qubit in use is bounded by the same threshold p

after each decoding step is completed (i.e., at t ¼
tl þ tdec þ �

2 ). We will restrict to the space of good trajec-

tories, since we know from the clock theorem that this
accounts for all but an exponentially small fraction, which
can be incorporated into the final error probability.
We will choose K large enough to ensure that the error

�
2 � j~t� tj in the clock time satisfies � � tprot, tdec. In this

way, we ensure that the decoding operations are performed
in the right order [14] and with sufficient precision. We
may thus account for the following error sources between
tl þ tdec þ �=2 and tlþ1 þ tdec þ �=2: (i) Inherited errors
from the previous rounds which could not be corrected for.
By assumption, these errors are bounded by pinher � p
.
(ii) Errors from the depolarizing noise during the free
evolution of the system. The system is sure to evolve freely

FIG. 2 (color online). A steplike trajectory in light gray illus-
trates the two ways of leaving region (3) of good trajectories
(dashed lines): either a spin flip can take the polarization out of
the thickly marked regions, or polarization may leave region (3)
as time passes without a spin flip (hollow dots).
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for a time tprot � �, i.e., the noise per qubit is bounded by

pevol � 1� exp½�rðtprot � �Þ� � rðtprot � �Þ. (iii) Errors
during the decoding. These errors affect the decoded rather
than the encoded system and stem from two sources: On
the one hand, the time the Hamiltonian is active has an
uncertainty tdec � �, which gives an error in the imple-

mented unitary of not more than exp½�kHk;l
deck� � 1. On the

other hand, depolarizing noise can act during the decoding
for at most a time tdec þ �. In the worst case, noise on any
of the code qubits during decoding will destroy the de-
coded qubit, giving an error bound df1� exp½�rðtdec þ
�Þ�g � drðtdec þ �Þ. Thus, the error on the decoded qubit is

pdec � exp½kHk;l
deck�� � 1þ drðtdec þ �Þ:

Since the noise is Markovian (i.e., memoryless), the clock
does not correlate its errors in time. In summary, the error
after one round of decoding is at most Bðpinher þ pevolÞ þ
pdec, which we require to be bounded by p
 again. Here,
BðpÞ is a property of the code, and returns the error
probability of the decoded qubit, given a probability p of
error on each of the original qubits; for example, for the 5-
qubit perfect QECC [15], BðpÞ � 10p2.

Wewill now show that it is possible to fulfill the required
conditions by appropriately defining the control parame-
ters. First, we choose p
 � 1=40 to have the QECC [15]

work well below threshold. We may take tprot :¼ p

r and

tdec :¼ p

4dr . To minimize imprecision in the implemented

unitaries, the decoding Hamiltonians are chosen to be of

the minimal possible strength, kHk;l
deck � 2�

tdec
. Finally, we

take � :¼ p
tdec
8� . Inserting the proposed values in the de-

rived bounds, it is straightforward to show that Bðpinher þ
pevolÞ þ pdec <p
.

The number of code qubits required is N :¼ dl, with
l :¼ d �

tprotþtdec
e. The required logarithmic clock lifetime

tmax ¼ � and the precision � are obtained by taking � ¼
1=6 and K :¼ ð2er�r� Þ3, by virtue of Eq. (5) of the clock
theorem. For any fixed r and p
, this allows a lifetime ��
O½logðN þ KÞ�.

Conclusions.—In this Letter, we have considered the
ability of a Hamiltonian to protect quantum information
from decoherence. While without a Hamiltonian, quantum
information is destroyed in constant time, the presence of
time-dependent control engenders protection for logarith-
mic time, which is optimal. As we have shown, the same
level of protection can be attained with a time-independent
Hamiltonian. The construction introduced a noise-driven
clock which allows a time-dependent Hamiltonian to be
implemented without explicit reference to time.

Since depolarizing noise is a limiting case of local noise
models, it is expected that the time-independent Hamilton-
ian developed here can be tuned to give the same degree of
protection against weaker local noise models, although
these models may admit superior strategies. For instance,
noise of certain forms (such as dephasing) allows for
storage of ancillas, potentially yielding a linear survival

time by error correcting without decoding. In the case of
amplitude damping noise, the noise itself distills ancillas so
that the circuit can implement a full fault-tolerant scheme,
which gives an exponential survival time, assuming that
one can redesign the clock gadget to also benefit from these
properties.
Whether the same degree of protection can be obtained

from a Hamiltonian which is local on a 2D or 3D lattice
geometry remains an open question [16]. However, intu-
ition suggests this might be impossible; the crucial point in
reversibly protecting quantum information from depolariz-
ing noise is to concentrate the entropy in one part of the
system. Since the speed of information (and thus entropy)
transport is constant due to the Lieb-Robinson bound [17],
the rate at which entropy can be removed from a given
volume is proportional to its surface area, while the en-
tropy increase goes as the volume. It thus seems impossible
to remove the entropy sufficiently quickly, although this
argument is not fully rigorous, and the question warrants
further investigation.
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