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We propose a scheme to implement an optical kagome lattice for ultracold atoms with controllable

s-wave interactions between nearest neighbor sites and a gauge potential. The atoms occupy three

different internal atomic levels with electromagnetically induced coupling between the levels. We show

that by appropriately shifting the triangular lattice potentials, experienced by atoms in different levels, the

kagome lattice can be realized using only two standing waves, generating a highly frustrated quantum

system for the atoms.
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Ultracold atomic gases in periodic optical lattice poten-
tials can form a highly controllable quantum many-particle
system that has demonstrated interesting analogies to crys-
tal lattice systems of strongly interacting electrons. Among
such experimental developments are the Mott insulator
states of both bosonic [1] and fermionic atoms [2,3],
fermionic superfluidity [4], atom transport [5–7], and
superexchange correlations in a collection of double wells
[8]. The rapid progress has generated interest in engineer-
ing ultracold atomic lattice systems that could provide
clean realizations of Hubbard models of strongly corre-
lated crystal lattice systems with the potential use of atoms
as quantum simulators of some unresolved models, e.g., in
high-Tc superconductivity [9].

One of the challenging problems in the theory of
strongly correlated systems has been to characterize the
phase diagrams of two-dimensional (2D) and 3D Hubbard
models of geometrically frustrated lattices, with competing
interactions resulting in highly degenerate ground states.
Of particular interest are corner-sharing networks of com-
plete graphs, such as kagome and pyrochlore or checker-
board lattices. It was recently proposed that frustration in
pyrochlore and diamond lattices could generate fractional
charges in the presence of nearest neighbor (NN) repulsion
[10], with similar excitations potentially existing in a
kagome lattice. Moreover, spin-1=2 NN Heisenberg anti-
ferromagnet on a kagome lattice provides arguably the
most promising candidate for a quantum spin liquid, with
the kagome lattice exhibiting a higher degree of frustration
than, e.g., a triangular lattice [11], and it has recently
attracted considerable interest in volborthite and herberts-
mithite compounds. Despite extensive theoretical effort the
true nature of the ground state of the kagome system has
been evasive [12]. In addition, kagome systems can ex-
hibit, e.g., kinetic ferromagnetism [13], and production of
trimerized and ideal kagome lattices for ultracold atoms
has also started attracting theoretical interest [14].

In this Letter we propose a constructed 2D optical
kagome lattice system of neutral atoms with collisional
interactions between NN sites. The hopping between the
NN sites is induced by electromagnetic (EM) transitions

between three internal atomic states. Because of the spin-
dependent lattice system, the kagome lattice can be pre-
pared with only two optical standing waves (SWs), as
compared to six SWs in previous proposals [14], with the
additional advantage of controllable nonlocal two-body
interactions between different sites and the possibility for
the creation of Abelian and non-Abelian gauge potentials.
The strength of the EM-driven hopping can be tuned over a
wide range of values with respect to tunneling between
more distant sites and the NN collisions. Spin-dependent
lattices where the different atomic spin components were
moved around independently were experimentally created
using 87Rb atoms [15]. Alkaline-earth-metal atoms and
rare-earth metals with narrow optical resonances (e.g., Sr,
Yb) are particularly suitable for realizing spin-dependent
optical lattices, because of slow loss rates due to sponta-
neous emission [16].
We consider ultracold (bosonic or fermionic) atoms

occupying three internal sublevels jji (j ¼ 1; 2; 3) of the
same atom that are coupled by EM transitions. The atom
dynamics is assumed to be restricted to 2D on a yz plane
due to a tight magnetic or optical confinement [17,18]. On
the yz plane each species experiences a triangular optical
lattice potential, generated by two SWs with wave vectors

k�;� ¼ kðêy �
ffiffiffi
3

p
êzÞ=2. The atom-lattice model is based

on an atomic (single-band) Hubbard Hamiltonian [19]
where the atoms occupy the lowest mode of each lattice
site. We show that by appropriately tuning the frequencies
of the lattice lasers, the lattice potentials of the three
species can be shifted in a triangular shape to form a
kagome lattice pattern. Then the four NN sites are occu-
pied by the atoms in the other two sublevels and the
hopping of the atoms between adjacent sites, with ampli-
tude �jk, only occurs as a result of driving by coherent EM

fields that change the internal atomic level. The hopping to
the nearest sites occupied by the atoms in the same sublevel
results from tunneling between the sites and, in sufficiently
deep lattices, it may be suppressed. Moreover, the specialty
of the proposed scheme is that by adjusting the overlap of
the NN lattice site wave functions (Wannier functions) we
can prepare a lattice system with a non-negligible, control-
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lable s-wave interaction between adjacent sites UNN
jk (j �

k), with both limits UNN
jk � �jk and UNN

jk � �jk achiev-

able, providing a frustrated quantum system with NN
interactions.

As a realization of a frustrated kagome lattice with
desired interactions, we consider a tripod four-level
scheme; Fig. 1. The atoms in the three electronic ground
states are coupled to a common electronically excited level
jei by different resonant transition frequencies !j (!3 >

!2 >!1). The lattice laser �, with the frequency !�, is
blue detuned with respect to two of the transitions ��;j ¼
!j �!� < 0, for j ¼ 1; 2, and red detuned with respect to

one ��;3 > 0. Then the atoms in the states j1i, j2i (j3i) are
attracted towards low-intensity (high-intensity) regions of
�. The lattice laser �, with the frequency !�, is blue

detuned from one of the transitions ��;1 < 0 and red de-

tuned from the others. For simplicity, we assume jei ¼
je;mi, j1i ¼ j1; m� 1i, j2i ¼ j2; mi, and j3i ¼
j3; mþ 1i, so that the transitions j1i ! jei, j3i ! jei,
and j2i ! jei have dipole matrix elements de1 ¼
hejdj1i ¼ Dhej1; 1iê�þ1, de3 ¼ Dhej � 1; 3iê��1, and
de2 ¼ Dhej0; 2iê�0, coupling to the light with polarizations
�þ, ��, and ê0, respectively. HereD is the reduced dipole
matrix element, hej�gi are the Clebsch-Gordan coeffi-

cients, and we use êþ1 ¼ �ðêx þ iêyÞ=
ffiffiffi
2

p
, ê�1 ¼ ðêx �

iêyÞ=
ffiffiffi
2

p
, and ê0 ¼ êz. We assume the polarizations of the

two SWs to be orthogonal ê� � ê�� ¼ 0, so that the lattice

potential reads Vj ¼ V�
j þ V�

j with

V�
j ¼ sj�Ersin

2½kðy� ffiffiffi
3

p
zÞ=2þ ’�j�; (1)

where � ¼ �;� and þð�Þ refers to � (�). Here ’1� ¼

’3� ¼ 0, ’2� ¼ ’3� ¼ �=2, and sj� / jðdej � ê�Þ2=��;jj
denotes the lattice strength in the lattice photon recoil
energy units Er ¼ @

2k2=2m, depending on the light polar-
ization, atomic sublevel, and the detuning. To produce
three triangular lattices the lasers need to couple simulta-
neously to all the three transitions, so that sj� and sj� are

nonvanishing for all j. This can be obtained by choosing
the SW polarizations so that ê� � ê��1;0 � 0 together with

ê� � k� ¼ 0 (� ¼ �;�) and ê� � ê�� ¼ 0.

Wewill next demonstrate an example to show that such a
solution can be found for ê�;� and can also be used to

control the relative strengths of the three triangular lattices.
This can be especially useful if the absolute values of the
detunings are very different. We consider the level scheme
shown in Fig. 1 and, for simplicity, assume that j��;3j ¼
j��;2j ¼ 3j��;1j ¼ 3j��;3j ¼ j��;2j ¼ j��;1j (indicating

that !1 �!2 ¼ !2 �!3 and that the lasers are detuned
exactly at the midpoint between the nearest transitions) and
that the Clebsch-Gordan coefficients are equal. The polar-
izations of the SWs (orthogonal to the corresponding wave

vectors kj) are ê�;� ¼ a�;�ð�
ffiffiffi
3

p
êy þ êzÞ=2þ b�;�êx. We

choose the complex coefficients a�;� and b�;� in such a

way that ê� � ê�� ¼ 0, jê��1 � ê�j2 ¼ 3jê�þ1 � ê�j2, and

jê�þ1 � ê�j2 ¼ 3jê��1 � ê�j2. The last two conditions ensure

that we have s1� ¼ s3�, compensating for the different

values of the detunings. A straightforward algebra yields
solutions for a�;� and b�;� with s2� ¼ 4s3�=5 (� ¼ �;�),

resulting in only very small differences between the lattice
strengths. We also find that the two SWs in Eq. (1) have
equal amplitudes for each level, i.e., sj� ¼ sj� for all j.

For each species the lattice potential Vj is an equilateral

triangle with the side 2d, where d ¼ �=
ffiffiffi
3

p
k denotes the

NN separation; Fig. 1. The minima of the potential are at
the triangle corners which for j1i are at ðy; zÞ ¼
½ðnþmÞ�=k; ðn�mÞd�, for j2i at ½ðnþmþ
1=2Þ�=k; ðn�m� 1=2Þd�, and for j3i at ½ðnþmþ
1Þ�=k; ðn�mÞd�, with n, m integers. The triangular latti-
ces of j2i and j3i are shifted to coincide with the side
midpoints of the triangular lattice of j1i. The combined
system of interlaced triangular lattices forms a kagome
lattice.
In order to estimate the relative strengths of the

different terms in the lattice Hamiltonian we evaluate the
corresponding integral representations. The direct tun-
neling amplitude, where atoms remain in the same hyper-

fine level during the hopping process, reads Jpb ’
�R

dydzð� @
2

2m�
�
bnr2

k�bn0 þ��
bnVb�bn0 Þ> 0, where

r2
k ¼ @2y þ @2z and Vb is given by Eq. (1). The Wannier

functions for atoms in jbi at site n are�bnðy; zÞ and may be
approximated by the ground state harmonic oscillator wave

function with the trap frequencies!y ’
ffiffiffiffiffi
2s

p
Er=@ and!z ’ffiffiffiffiffi

6s
p

Er=@ at the lattice site minimum [19]. The site n0 here
refers to the nearest site to n occupied by the same atomic
hyperfine level along the direction of p, where p takes the

1

2

3

e

αωβω

1ˆ−e

1ˆ+e

0ê
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FIG. 1 (color online). Left: In the kagome lattice the atoms
occupy three electronic ground states with a common excited
state. The frequencies of the two lattice lasers are tuned between
the atomic resonance frequencies in such a way that !3 >!� >

!2 >!� >!1. The polarization components of the lattice

lasers that couple to each individual transition are indicated.
Right: Atoms in each of the three internal levels jji (j ¼ 1; 2; 3)
experience an equilateral triangular lattice potential. These lat-
tices are shifted with respect to each other, so that the lattice site
occupied by the atoms in j2i (j3i) is at the midpoint of the
triangle side of j1i defined by the unit vector k�=k ¼ ðêy �ffiffiffi
3

p
êzÞ=2 (êz). Each site has four NN sites, so that, e.g., the site of

j1i has two NN sites of j2i and two of j3i.
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values of the triangle sides: k�;�; ẑ. Here Jk�

b ¼ J
k�

b by

symmetry. For Jk�

b and Jẑb we have �b;n0 ðy; zÞ ¼ �b;nðyþffiffiffi
3

p
d; zþ dÞ and �b;n0 ðy; zÞ ¼ �b;nðy; zþ 2dÞ, respec-

tively. Because of the anisotropy of the individual lattice
site wave functions, the hopping amplitudes along the z
direction differ slightly from those along the direction of
the two SWs. Although a more rigorous calculation of the
hopping amplitudes would involve a full band-structure
calculation, here it is sufficient to provide order-of-
magnitude analytic estimates using the Gaussian ap-
proximations to �bn.

The EM field changes the internal level of the atom.
Because the lattice site minima of the different sublevels
are shifted with respect to each other, the atoms simulta-
neously also undergo spatial hopping along the lattice. The
hopping amplitude reads

�bc ¼
Z

d3r��
bn@Rbc�cn0 ; (2)

where Rbc denotes the effective Rabi frequency for the
transition between the levels jbi and jci and n0 refers to the
NN site of species jci to the site n occupied by the species
jbi, with �bc proportional to the spatial overlap between
the atoms in the NN sites. As shown in Fig. 1, �12, �23, and
�13 represent hopping along the directions of k�, k�, and

ẑ, respectively. As for the direct tunneling we then have
�12 ¼ �23, but �13 is not exactly equal. Note that �bc in
Eq. (2), unlike the direct tunneling, can take positive,
negative, or even complex values.

The explicit expression for the Rabi frequency Rbc

depends on the particular form of the EM coupling be-
tween the internal levels which can be a one-photon or a
multiphoton transition. For a two-photon transition via an
off-resonant intermediate level je0i (which for a laser can
be electronically excited and for a rf or microwave an
electronic ground state) we may adiabatically eliminate
je0i [20]. We then obtain Rbc ¼ EbE�

cde0bd
�
e0c=ð2@2�Þ

and a contribution to the EM-induced level shifts
�jEjj2jde0jj2=ð2@2�Þ for jji. Here de0j 	 de0j � êj and we

assumed that jbi is coupled to je0i by the EM field with
the positive frequency component Eþ

b ¼ 1
2 êbEbe

ikb�rei�bt

and detuning�. Using the Gaussian approximation to�bn,

we obtain �jk ’ @Rjk	jk exp½�ð3þ ffiffiffi
3

p Þ�2 ffiffiffiffiffiffi
�sjk

p
=48

ffiffiffi
2

p �,
for ðj; kÞ ¼ ð1; 2Þ; ð2; 3Þ and �13 ’ @R13	13 

expð��2 ffiffiffiffiffiffi

�s13
p

=4
ffiffiffi
6

p Þ, where �sjk 	 4sjsk=ð ffiffiffiffi
sj

p þ ffiffiffiffiffi
sk

p Þ2
and 	jk 	 ½ �s2jk=ðsjskÞ�1=4. Here we assumed that the lattice

potentials by the lasers � and � in Eq. (1) have the same
amplitude in each level jji, i.e., sj� ¼ sj�, and we sup-

pressed in the notation the index referring to the particular
laser.

The on site interaction term may also be obtained from

the Wannier functions Ujj ’ gðjjÞ2D

R
dydzj�jnj4. The 2D

nonlinearity gðjkÞ2D ’ 2�@2ajk=mlx
ffiffiffiffiffiffiffi
2�

p
is given in terms

of the scattering length ajk and the 2D trap confinement

lx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=m!x

p
where the oscillator frequency perpen-

dicular to the lattice is !x. The additional density-
dependent contribution to the scattering length in 2D is

negligible when
ffiffiffiffiffiffiffi
2�

p
lx=ajj � lnð8�3=2lxn2DajjÞ [21],

where n2D denotes the 2D atom density. For fermi-
onic atoms ajj ¼ 0 and the on site interaction term van-

ishes for a single-species gas if the atoms only occupy
the lowest mode of each lattice site, but is nonvanish-
ing for a two-species gas trapped in each lattice site.
The NN interaction due to the s-wave scattering be-
tween the atoms in different sublevels is always nonvan-
ishing for both bosonic and fermionic atoms. It is gener-
ated in the spatial overlapping area of the adjacent sites and

may be estimated by UNN
jk ’ 2gðjkÞ2D

R
dydzj�jnj2j�kn0 j2.

We obtain Ujj ’ ajj3
1=4Er

ffiffiffiffi
sj

p
=lx

ffiffiffiffi
�

p
, UNN

13 ’
2a133

1=4Er

ffiffiffiffiffiffi
�s13

p
e��2 ffiffiffiffiffi

�s13
p

=2
ffiffi
6

p
=lx

ffiffiffiffi
�

p
, and for other states

UNN
jk ’ 2ajk3

1=4Er

ffiffiffiffiffiffi
�sjk

p
e�ð3þ ffiffi

3
p Þ�2

ffiffiffiffiffi
�sjk

p
=24

ffiffi
2

p
=lx

ffiffiffiffi
�

p
.

The Hamiltonian for the atomic system then reads

H ¼ X
k

½	kcyk ck þUkkc
y
k c

y
k ckck� �

X
hjki0

ðJpbcyj ck þ H:c:Þ

�X
hjki

½ð�bcc
y
j ck þ H:c:Þ þUNN

bc c
y
j cjc

y
k ck�; (3)

where hjki denotes the summation over adjacent lattice
sites and hjki0 over the nearest sites that are occupied by the
same atomic species. The level shifts and the detunings due
to EM-induced hoppings are included in 	k. Here Jpb > 0,
but the other coefficients can also take negative values, and
�bc can be complex.
We may compare the different terms in the Hamiltonian.

For typical experimental parameters for bosonic atoms we
have Ujj � UNN

jk (j � k). For simplicity, assuming s1 ¼
s2, we obtain for lattice heights s ¼ 25 and 40,UNN

12 =Ujj ’
10�3a12=ajj and 10�4a12=ajj. At the same lattice heights

the EM-driven hopping amplitudes in terms of the direct

tunneling and the NN interactions are given by �12=J
k�

1 ’
540ð@R12=ErÞ and 5100ð@R12=ErÞ, and �12=U

NN
12 ’

4:2ðlx=a12Þð@R12=ErÞ and 8:3ðlx=a12Þð@R12=ErÞ. In shal-
low lattices, with weak EM coupling between the sublevels
@R12=Er � 1, the NN hopping �bc and the direct tunnel-
ing Jpb between more distant sites may be comparable. In

deeper lattices and for stronger �bc the direct tunneling
terms may be ignored. If the transverse confinement of the
2D lattice is weak (lx large) and the Rabi field sufficiently
strong @R12lx=ða12ErÞ � 1, we may also neglect UNN

bc

with �bc � UNN
bc , and in Eq. (3) we only keep terms

proportional to 	k, Ukk, and �bc. An especially interesting
property of the proposed scheme is that we may also find a
wide range of parameter values for whichUNN

bc * �bc. This

limit can always be achieved with sufficiently weak EM
coupling. If we also simultaneously require that �bc � Jpb ,
we may, e.g., at s¼50 select @R12=Er’5
10�4 and lx ’
17a12, resulting inU

NN
bc ’ 10�bc. For instance, for

87Rb the
s-wave scattering length between jF¼1;MF¼�1i and
j2;þ1i hyperfine states is about 5.191 nm [22], corre-
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sponding to the transverse trap frequency of !x ’ 2�

15 kHz, achievable, e.g., by an optical lattice. The inter-
species scattering length could be increased by Feshbach
resonances, further enhancing the effect of the NN inter-
actions UNN

bc , so that one could reach Ujj � UNN
bc �

�bc � Jpb also in shallow lattices. Interspecies Feshbach

resonances were observed also in 87Rb between different
hyperfine states [23], and in optical lattices at low occupa-
tion numbers the harmful three-body losses are suppressed.
Moreover, alkaline-earth-metal and rare-earth-metal atoms
with very narrow optical resonances [16] may allow the
lattice lasers to be tuned close to the atomic resonance
making it easier to produce deep lattices.

The simplest situation is to select the phases of the EM
fields in Eq. (2) so that all the hopping amplitudes �bc are
real and positive. It is, however, also possible to engineer a
nonuniform phase profile for the hopping amplitudes
which was in Ref. [24] proposed as a mechanism to con-
struct topologically nontrivial ground states with fractional
fermion numbers in 1D. In a 2D lattice the technique can
be used to create an effective magnetic field for neutral
atoms [25]. Here we may similarly induce a phase for
atoms hopping around a closed path in the lattice, mimick-
ing a magnetic flux experienced by charged particles. We
write �bc ¼ j�bcjei
bc where the phases 
bcðrÞ may be
constant or spatially varying [24,25]. The hopping around
one unit triangle then generates the phase �
 ¼

12 þ 
23 � 
13 for the atoms, corresponding to a mag-
netic flux � / �
 through the area enclosed by the tri-
angle. For instance, for spatially constant 
bc with�
 � 0,
the entire lattice area may be divided into side-sharing
triangles where each adjacent triangle experiences the
flux with the opposite sign. In the case of atoms occupying
more than one sublevel in each lattice site, we may also
generate non-Abelian vector potentials similarly to
Ref. [26]; see also [27,28].

For strong NN interactions with 1=3 filling, even without
a vector potential, our model produces a frustrated ground
state where one atom in each triangle of sites is strongly
influenced by the atoms in other corner-sharing triangles. It
is helpful to consider a honeycomb lattice, formed by
connecting the centers of triangles of the kagome lattice,
where the sites are coupled by ring-hopping processes [29].
A lattice system described by an analogous quantum dimer
model on a pyrochlore or checkerboard lattice and on a 3D
diamond lattice was recently shown to support fractional
charges [10]. Similar fractional excitations are expected to
exist in the kagome lattice system, where they can act as
independent, deconfined particles over finite distances at
temperatures above the ordering transition driven by quan-
tum fluctuations—in this case by the ring-exchange pro-
cesses [30]. Atomic states in the prepared lattice system
could potentially be detected optically [31].

Our formalism considers one atomic species per lattice
site. It is straightforward to generalize it to the situation
where a two-species gas is trapped in each site with EM

field inducing hopping for both species. Then the on site
interaction and the hopping terms can be expressed as an
effective Heisenberg spin-1=2 Hamiltonian Heff ’P

hi;ji½tzSziSzj � t?ðSxi Sxj þ Syi S
y
jÞ� where the þ (�) sign

refers to fermionic (bosonic) atoms and Ski denote the
spin matrices [32]. The fermionic version has been exten-
sively studied in 2D kagome lattices where the ground state
of the SU(2) symmetric case (tz ¼ t?) still has unsettled
questions, e.g., in the existence of spontaneously broken
symmetries and finite energy gaps [12]. The SU(2) sym-
metric case can also be realized with fermionic atoms as tz,
t? can be independently varied [32] by controlling the EM-
induced hopping of the two species.
We are grateful to N. Shannon for explanations of the

importance of kagome lattices and EPSRC for funding.
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