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Minicharged particles arise in many extensions of the standard model. Their contribution to the vacuum

polarization modifies Coulomb’s law via the Uehling potential. In this Letter, we argue that tests for

electromagnetic fifth forces can therefore be a sensitive probe of minicharged particles. In the low mass

range & �eV existing constraints from Cavendish type experiments provide the best model-independent

bounds on minicharged particles.

DOI: 10.1103/PhysRevLett.103.080402 PACS numbers: 12.20.Fv, 12.60.�i

1. Introduction.—Coulomb’s inverse square law for the
force between two charges is one of the central features of
classical electrodynamics. Its experimental discovery by
Cavendish, Coulomb, and Robison was an important step
in the development of classical electrodynamics culminat-
ing in Maxwell’s equations. Over the last more than
200 years, Coluomb’s law has been tested with increasing
precision and at various length scales (see, e.g., [1,2]).
Indeed, the first detected deviation from it in the form of
the Lamb shift was one of the first indications of ‘‘new
physics’’ in the form of quantum electrodynamics [3–5].

Nowadays, precise tests of Coulomb’s law can serve as a
powerful probe to search for new physics beyond the
standard model. A classical application is the search for a
photon mass (see, e.g., [1,2]). Beyond that, tests of
Coulomb’s law can even be used to search for new particles
in so-called hidden sectors, which interact only very
weakly with the particles of the standard model and which
are accordingly difficult to detect in conventional collider
experiments. Because of their feeble interactions, con-
straints on hidden-sector particles are often quite weak
and they may be light with masses in the eV range or
even below. Hidden sectors appear in many extensions of
the standard model. In fact, it may be exactly those hidden
sectors that give us crucial information on how the standard
model is embedded into a more fundamental theory as,
e.g., string theory. This makes it very desirable to have
new, complementary probes of such particles. One ex-
ample of a hidden-sector particle that can be searched for
using tests of Coulomb’s law is massive extra U(1) gauge
bosons [6,7]. In this Letter, we will argue that they can also
be used to search for another interesting class of hidden-
sector particles, namely, particles with a small electric
charge, so-called minicharged particles (see, [8,9] for a
test via the Lamb shift).

Minicharged particles arise naturally and consistently
(in theories with kinetic mixing [10] minicharged particles
are indeed consistent with the existence of magnetic mono-
poles [11]) in a wide variety of extensions of the standard
model based on field [10] and string theory [12].
Expectations for the size of their charge cover a wide range
from 10�16 to 10�2 [10,12]. The best current laboratory

limits in the sub-eV mass range are of the order of �10�6

(cf. Fig. 1). Astrophysical bounds (see, e.g., [8]) are con-
siderably stronger but also somewhat model dependent
[13] (see, however, [14,15] which combined give a less
model dependent bound �10�9 from cosmology).
Therefore, it is of particular importance to find new ways
to search for minicharged particles in laboratory experi-
ments. In this Letter, we will show that Cavendish type
experiments searching for a deviation from Coulomb’s law
can be used for this purpose.
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FIG. 1 (color online). Laboratory bounds on minicharged par-
ticles. The black line (on the left, bottom solid) corresponds to
the exclusion limit obtained in this Letter from the Cavendish
type tests of Coulomb’s law. The blue bound (on the left, middle
solid) arises from constraints on energy losses in high quality
accelerator cavities [22]. The dark green curve (on the left, top
solid) gives the limit arising from bounds on the invisible decay
on orthopositronium [23,24] (a similar bound can be obtained
from a reactor experiment [25]). The red-black dashed line
denotes the limit [18,26] arising from light-shining-through-a-
wall experiments [27,28] and applies only to minicharged par-
ticles arising from kinetic mixing (for a way to test pure mini-
charged particle models in a light-shining-through-a-wall
experiment, see [29]) whereas the red dashed curve gives a limit
[26,30] from polarization experiments [27,31] (an interesting
alternative to polarization experiments is interferometry [32])
and applies for a pure minicharged particle scenario. The shaded
areas are excluded in both scenarios.
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2. Deviations from Coulomb’s law from minicharged
particles.—Minicharged particles cause a deviation from
Coulomb’s law via their effect on the vacuum polarization,
in particular, via the Uehling potential [16]. The presence
of a nonvanishing vacuum polarization modifies the elec-
tric potential of a charge Q (see, e.g. [17]),

VðxÞ ¼ VCoulombðxÞ þ �VðxÞ

¼ Q
Z d3q

ð2�Þ3 expðiq � xÞ e2

jqj2½1� �̂�ðqÞ�
; (2.1)

where �̂�ðqÞ is an on shell renormalized version of the
vacuum polarization, e.g.,
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2
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�
:

(2.2)

For the vacuum polarization contribution of a particle of
charge � to the potential a standard textbook calculation
[17] gives,
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For large distances, r � 1=m, �V drops off exponentially
whereas for small distances, r � 1=m; its behavior is
logarithmic as expected from the running gauge coupling,
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(2.4)
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�

So far we have considered the case where the mini-
charged particles have no further interactions. However,
one of the most natural ways in which minicharges arise is
via kinetic mixing [10] of the electromagnetic U(1) gauge
boson with an extra ‘‘hidden’’ gauge boson under which
the standard model particles are uncharged. For such a
theory the Lagrangian reads

L ¼ �1
4F

��F�� � 1
4B

��B�� � 1
2�F

��B��; (2.5)

where F�� is the field strength tensor for the ordinary

electromagnetic Uð1ÞQED gauge field A�, and B�� is the

field strength for the hidden sector Uð1Þh field B�, i.e., the
hidden photon. The first two terms are the standard kinetic
terms for the photon and hidden photon fields. Because the
field strength itself is gauge invariant for U(1) gauge fields,
the third term is also allowed by gauge and Lorentz sym-
metry. This term corresponds to a nondiagonal kinetic

term, a so-called kinetic mixing. From the viewpoint of
the low energy effective theory � is a completely arbi-
trary parameter. Typical expectation in extensions of the
standard model range from 10�16 to 10�2 [10,12].
Accordingly, we will treat � in the following as a small
parameter, � � 1.
The kinetic term can be diagonalized by a shift

B� ! ~B� � �A�: (2.6)

The only effect on the visible sector field A� is a multi-
plicative change of the gauge coupling,

e20 !
e20

1� �2
	 e2: (2.7)

We can now see how a minicharge arises, for example,
for a hidden matter fermion h that has charge one under
B�. Applying the shift (2.6) to the coupling term, we find

eh �hB6 h ! eh �h
~6Bh� �eh �hA6 h; (2.8)

where eh is the hidden-sector gauge coupling. We can read
off that the hidden-sector particle now has a small electric
charge

�e ¼ ��eh � 1 for � � 1 (2.9)

under the visible electromagnetic gauge field A� which has
gauge coupling e.
The interesting questions is now what is the effect of a

vacuum polarization caused by the hidden-sector particle
h, i.e., the minicharged particle. The vacuum polarization
can be most easily calculated in the unshifted basis where h
couples only to the hidden-sector field B�. Accordingly its
only effect is that the B� field has to be renormalized by a
factor,

ffiffiffiffiffiffi
Zh

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �̂hðq2Þ

q
; (2.10)

where �̂h is given exactly by the same expression,

Eq. (2.2), as for �̂� only with ��2 replaced by the full
hidden-sector gauge coupling �h. This renormalization
entails that �, too, has to be renormalized,

� ! �ffiffiffiffiffiffi
Zh

p : (2.11)

In turn, this then affects the renormalization Eq. (2.7) of the
ordinary electromagnetic gauge coupling after the diago-
nalization Eq. (2.6),

e20 !
e20

1� �2

Zh

¼ e20

1� �2

1��̂hðq2Þ

� e20

ð1� �2Þ½1� �2�̂hðq2Þ�
þOð�2e2�2

hÞ

¼ e2

1� �̂�ðq2Þ
; (2.12)

where we have treated �̂h as a small parameter and have
used the relations Eqs. (2.7) and (2.9) to obtain the last
equality. The right-hand side is exactly the expression that
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appears in Eq. (2.1). Accordingly, the vacuum polarization
effects in theories with kinetic mixing cause the same (up
to higher power in the hidden-sector gauge coupling �h)
deviations from Coulomb’s law as in models with only
minicharged particles. The bounds derived in the following
are therefore independent of the specific way in which the
minicharge arises.

Finally, in the above setting with kinetic mixing one
could imagine that the hidden U(1) gauge boson has a
(small) mass m�0 . At large distances r � 1=m�0 the be-

havior is then dominated by the (renormalized) mass of the
hidden photon and one gets the same Yukawa type modi-
fication of Coulomb’s law as discussed in [6,7] in the
absence of a minicharged particle [this is in alignment
with the fact that at momenta � m�0 the effective mini-

charge vanishes (see, [18])]. For small distances r �
1=m�0 the mass of the hidden photon plays no role and

one obtains the modification of Coulomb’s law discussed
in this Letter.

3. Bounds from Cavendish type experiments.—Having
identified the modification of the potential, we can now
turn to how it can be detected in experiments. Currently,
one of the most sensitive tests of the Coulomb potential is a
variation of the concentric sphere setup used by Cavendish.
The idea behind this experiment is that if and only if the
potential has a 1=r form, the inside of a charged sphere is
field free and the potential accordingly constant. In other
words, the potential difference between a charged outer
sphere and an uncharged inner sphere is zero if and only if
the electric potential has the Coulomb form. Deviations

from this form would lead to a nonvanishing potential
difference that can be measured.
In general, the potential of a sphere with a charge Q and

a radius c at the distance r from the center of the sphere is

UðQ; r; cÞ ¼ Q

2cr
½fðrþ cÞ � fðjr� cjÞ�; (3.1)

where

fðrÞ ¼
Z r

0
ds sVðs; Q ¼ 1Þ: (3.2)

It is straightforward to check that for a Coulomb potential
VCoulombðrÞ ¼ �=r, the potential inside the sphere, i.e., for
r < c, is constant. Explicitly one finds fðrÞ ¼ �r and
UðQ; r; cÞ ¼ Q�=c ¼ const.
In the simplest version of the Cavendish experiment, one

has an outer sphere of radius b, charged to a certain
voltage, and then measures the relative voltage difference
to the uncharged inner sphere of radius a < b,

�ab¼
��������
V b�V a

V b

��������¼
��������
UðQ;b;bÞ�UðQ;a;bÞ

UðQ;b;bÞ
��������

¼
��������

b

�Q

�UðQ;b;bÞ��UðQ;a;bÞ
1þ�UðQ;b;bÞb=ð�QÞ

��������
¼
��������
b

�

�Uð1;b;bÞ��Uð1;a;bÞ
1þ�Uð1;b;bÞb=�

��������: (3.3)

On the right-hand side it is understood that �U is the part
arising from the non-Coulomb part �V. Using Eq. (2.3) for
�V we can easily find,

�fðrÞ ¼ �2�2
2

3�
r
Z 1

2mr
dx

1� expð�xÞ
x2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4ðmrÞ2

x2

s �
1þ 2ðmrÞ2

x2

�
	 �2�2rgðmrÞ: (3.4)

Inserting into (3.3) we find,

�ab ¼ ��2

2

2gð2bmÞ � ð1þ b=aÞg½ðaþ bÞm� þ ðb=a� 1Þg½ðb� aÞm�
1þ ��2gð2bmÞ : (3.5)

We expect the best bounds for small masses m � 1=a, 1=b. In this limit we have,

gðmrÞ � � 2

3�
logð2mrÞ; for mr � 1: (3.6)

In this regime we therefore have,

�ab¼��2

3�

��������log
�

2b

aþb

�
þ log

�
2b

b�a

�
þb

a
log

�
b�a

bþa

���������þO½ð��2Þ2��0:05��2 ma;mb�1; (3.7)

where we have assumed b=a� 2 in the second line.
In such a setup, Plimpton and Lawton [19] achieved

already in 1936 a sensitivity of the order j�abj &
3� 10�10. This corresponds to a bound of the order of � &
9� 10�4. Later experiments used a somewhat more com-
plicated setup with several spheres. The latest and most
precise [20,21] uses four spheres (to be precise they used
icosahedrons but we will approximate those as spheres)
with radii d > c > b > a. A very high voltage is applied
between the outer two and the voltage difference is mea-

sured between the innermost pair. One can easily derive the
appropriate expression for this case,

�abcd¼
��������
V b�V a

V d�V c

��������
¼
��������
C½�Uðb;cÞ��Uða;cÞ��Uðb;dÞþ�Uða;dÞ�

1þC½�Uðc;cÞþ�Uðd;dÞ�2�Uðc;dÞ�
��������;

(3.8)
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where C�1 ¼ �ð1=c� 1=dÞ. For this quantity the experi-
ment achieves a precision [20,21],

�abcd & 2� 10�16; with a ¼ 60 cm; b ¼ 94 cm;

c ¼ 94:7 cm; d ¼ 127 cm: (3.9)

From our earlier discussion we expect � & few� 10�7 for
small masses. For larger masses m � 1=a, we expect a
rapid weakening of the bound due to the exponential decay
of the Uehling potential [cf. Eq. (2.4)] in this regime. The
bound obtained from a numerical evaluation of Eq. (3.8) is
shown in Fig. 1 as the black area. We can see that for small
masses this is the best laboratory bound that applies for
minicharged particles with and without an additional mass-
less hidden photon.

4. Conclusions.—In this Letter, we have shown that tests
of Coulomb’s law can be used to search for minicharged
particles. Minicharged particles leave their imprint on the
potential between charges via their contribution to the
vacuum polarization resulting in the Uehling contribution
to the potential. Very precise laboratory limits on devia-
tions from the Coulomb potential arise from Cavendish
type experiments. Using these we find a limit of � & 5�
10�7 in the mass range below 0:1 �eV (cf., also, Fig. 1). In
this mass range this is the best laboratory bound for mini-
charged particles in theories where the minicharge arises
from kinetic mixing.

As a final note, we would like to point out that the
Cavendish experiments [20] we used to derive our bounds
were performed nearly 40 years ago. One could hope that
with current technology significant improvements are pos-
sible. Therefore, precision tests of Coulomb’s law may yet
again help us to explore the frontier of new physics.
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