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Directional Locking and the Role of Irreversible Interactions in Deterministic Hydrodynamics
Separations in Microfluidic Devices
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We performed macroscopic experiments on the motion of a sphere through an array of obstacles that
highlight the deterministic nature of the lateral displacements that lead to particle separation in micro-
fluidic systems. The motion of the spheres is irreversible and displays directional locking. The locking
directions can be predicted with a single parameter that distinguishes between reversible and irreversible
particle-obstacle collisions. These results stress the need to incorporate irreversible interactions to predict
the movement of a non-Brownian sphere passing through a periodic array.
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The potential technological impact of lab-on-a-chip
technologies for analytical chemistry has propelled the
need for separation methods that are rapid, effective, and
continuous [1-4]. One strategy to achieve separation in
microfluidic devices has been the miniaturization of well-
established macroscale methods (such as size exclusion
and hydrodynamic chromatography). While effective,
these techniques are characterized (and limited) by the
random nature of the pore space, which implies that the
separative displacement of different species is the average
behavior of an inherently stochastic process. Alternatively,
microfabrication has opened the door to new concepts for
separation, such as deterministic hydrodynamics, in which
the components being fractionated become locked into
size-dependent periodic trajectories that exhibit lateral
migration as they travel through an array of obstacles [5].
This and similar techniques have been employed for the
fractionation of whole blood components [6], the assess-
ment of platelet size [7], and the fractionation of particles
via optical traps [8—10].

The separation principles involved in deterministic hy-
drodynamics are not well-understood. The proposed
mechanism is based on the streamlines followed by a
simple fluid at low Reynolds numbers (Stokes flow) and
in the absence of suspended particles [5,11]. Thus, it does
not include hydrodynamic or nonhydrodynamic interac-
tions between the particles and the obstacles, or possible
inertia effects. A better understanding of the phenomena
underlying the observed separation is needed to further
develop this promising method. Investigations in the re-
gime of high Peclet numbers would truly explore determi-
nistic behavior and would showcase the underlying
physical mechanism causing separation.

We conducted simple experiments using a large array of
obstacles and a uniform driving force (gravity) to explore
the deterministic nature of the deterministic hydrodynam-
ics separation method. We investigate the motion of stain-
less steel balls falling through a periodic array of obstacles
created with cylindrical LEGO® pegs on a LEGO® board
and immersed in a transparent tank filled with glycerol.
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The pegs have a radius R = 3.9 mm and are located on a
12 X 17 square lattice with lattice spacing / = 16 mm. The
board could be rotated to vary the forcing angle 6 relative
to the principal directions of the obstacle array. We used
stainless steel balls of density 7.75 gcm ™ with radii a =
1.5 mm, 3 mm, 3.18 mm, and 3.55 mm. Delrin particles of
density 1.4 gcm ™3 and @ = 3.18 mm were also employed.
The difference between the largest and the smallest diame-
ter measured in a single ball was less than 3 um for all the
particles. The estimated Reynolds number for the largest
particles is Re = 0.7. (see Ref. [12])

The particles follow periodic trajectories that exhibit
directional locking into lattice directions. In Fig. 1(a) we
show the periodic motion resulting from the directional
locking of the particles into the (1,2) lattice direction. Note
that the forcing angle is = 30°, which shows that the
average motion, o = arctan(1/2) = 26.57°, is not collin-
ear with the external force. While both 3 mm and 6 mm
spheres move in the same direction on average, their
periodic trajectories are not identical within a single lattice
cell. The periodicity of the trajectories is demonstrated in
Fig. 1(b), showing the collapse of multiple trajectories
projected into a single period. The periodic trajectory
followed by the particles is independent of the column of
the array in which the balls entered the system. We also
tracked several 6 mm particles in which we intentionally
changed the entry point within a single unit cell and
obtained the same asymptotic trajectory [Fig. 1(c)]. The
collapse of the trajectories into a unique periodic motion,
that is independent of initial position within a unit cell and
acts as a limit-cycle, is a direct observation that the evolu-
tion of the system is not (time) reversible and, therefore,
cannot be described with purely hydrodynamic interac-
tions in the Stokes limit [13—16]. Evidence of irreversible
motion has also been reported recently by Austin’s group
[11]. Finally, in Fig. 1(d) we show the trajectories obtained
for a forcing angle # = 13° for which we observe separa-
tion of the 3 mm balls from the 6 and 7.1 mm spheres.

The average migration angle plotted against the orienta-
tion of the external force is presented in Fig. 2 for spheres
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FIG. 1 (color online).  Trajectories for: (a) 3 mm and 6 mm
spheres with directional locking into the (1,2) direction at a
forcing angle of 30°; (b) a single period, obtained by translating
all the periods of different 6 mm sphere trajectories; (c) tra-
jectories of 6 mm spheres entering at different points in the array.
All trajectories locked into the (1,2) direction for a forcing angle
of 13.5°. (d) Trajectories of 3 mm (green dotted line), 6 mm (red
dashed line), and 7.1 mm (grey solid line) spheres. The 3 mm
sphere locked into the (1,4) direction, whereas the 6 mm and
7.1 mm spheres locked into the (0,1) direction. The forcing angle
was 13°.

of 3, 6 and 7.1 mm radii. In all cases we observe a Devil’s
staircase type of structure, consisting of plateaus and steps,
that is characteristic of directional locking systems [17,18].
The plateaus correspond to particular lattice directions that
are preferentially selected over specific ranges of force
orientations. The observed transitions between locking
directions are relatively smooth, in contrast to the expected
sharp transitions typical of phase-locking systems. In these
transition regions, however, we were able to identify por-
tions of the trajectory in which the particle is locally
moving at one of the two corresponding migration angles.
For example, with the LEGO® board oriented at a forcing
angle of 16.2° the 3 mm balls transition from being locked
into the (1,4) lattice direction for smaller angles to locked
motion in the (1,3) lattice direction. In this case there are
segments in which the particle moved in the (1,3) direction
and portions in which the average motion was in the (1,4)
direction. We calculate the probability to move in each
direction by counting the number and size of the associated
segments and obtained that, in all cases, the two directions
associated with the transition account for more than 90%
probability (see Ref. [12]). Note, however, that dividing the
trajectory in segments of any length is arbitrary, in that
what we define as segments could actually be part of a

periodic trajectory with a much larger period and a single
migration angle.

Several forcing angles can be found for which different
particles will move in different directions. Moreover, some
of the spheres exhibited locked-in states that the other
spheres did not, such as the (1,4) lattice direction for the
3 mm balls or the motion in the (2,3) lattice direction
exhibited only by the 3 mm and the 6 mm balls but not
the 7.1 mm balls. We also observe that the first critical
angle, at which the ball becomes unlocked from the (0,1)
lattice direction, shows a strong dependence on particle
size. In fact, we used the first critical forcing angles to
separate the particles shown in Fig. 1(d).

The complex dependence of the migration angle on the
driving force shown in Fig. 2 can be reproduced with a
simple two-particle model that we introduced previously
[19]. In agreement with the present experiments our simu-
lations showed that, in the presence of short-ranged, non-
hydrodynamic interactions between the moving sphere and
the solid obstacles, particles moved in (uniquely deter-
mined) periodic trajectories and exhibited directional lock-
ing. We then approximated the motion inside the obstacle
array by a series of independent collisions between the
moving sphere and the obstacles. Each of the hydrody-
namic collisions is then classified as irreversible or revers-
ible depending on whether they induce or not a net lateral
displacement in the trajectory of the moving particle. The
simulations showed that the magnitude of the induced
lateral displacement can be described in terms of a single
parameter, the critical impact parameter b, shown in Fig. 3.
If the incoming impact parameter b;, is larger than b, the

Effective Angle (degrees)

1

0 10 20 30 40

Forcing Angle (degrees)

FIG. 2 (color online). Effective angles as a function of the
orientation of the driving force. The simulation results best fit the
experiments with 3 mm (solid blue), 6 mm (dotted red), and
7.1 mm (dashed green) spheres when b. = 2.30 (3.5 mm), 1.36
(4.1 mm), and 1.48 (5.3 mm), respectively.
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collision trajectory is symmetric, but all collisions with
b;, < b, collapse into a single outgoing trajectory that
corresponds to the symmetric collision with b, = b,.
This irreversible collapse of a finite range of incoming
trajectories into a single outgoing trajectory leads to peri-
odic motion and phase-locking dynamics [20]. The critical
impact parameter fully determines the migration angle for
a given forcing direction and is a measure of the asymme-
try induced by the irreversible interactions present in the
system, such as forces resulting from solid contact due to
roughness or electrostatic repulsion. (Note that our simu-
lations considered spherical obstacles, in contrast to the
cylindrical obstacles used in the experiments.) In Fig. 2 we
also compare the experimental results with the two-particle
collision model discussed above, with b, as the only fitting
parameter. The excellent agreement between the experi-
mental data and the simulations indicates that this (simple)
model is able to capture the complex dynamics of the
system.

Finally, to confirm that (reversible) Stokes dynamics
cannot reproduce the observed behavior, we performed a
set of experiments in which we used particles of the same
size (6.35 mm diameter) but of different densities (stainless
steel vs plastic balls). While the driving force and the
velocity of the particles will be affected by a change in
particle density, in the Stokes limit both particles should
follow the exact same path for all forcing angles. The
external force is proportional to the density difference
between the solid balls and the suspending fluid and thus,
will be different for the two types of particles. In the Stokes
limit, however, the velocity vector is a linear function of
the driving force (through a second order tensor). There-
fore, a change in the magnitude of the force will only
change the speed of a falling particle but not its trajectory.
On the other hand, if the trajectory of the particles depends
on their density, other factors such as nonhydrodynamic
effects or inertia must be playing a role. As shown in Fig. 4,
the observed phase locking is clearly different for the two
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FIG. 3 (color online).  Schematic view of the different trajec-
tories resulting from the collision of a freely suspended sphere
(particle), on which a constant external force is applied, with a
sphere that remains fixed at the center (obstacle). The symmetry
of the particles trajectory is broken if the incoming impact
parameter (b;,) is less than the critical impact parameter (b,)
(see the text).

particles, thus demonstrating that Stokes hydrodynamics
fails to predict the observed behavior. Experiments were
performed for both types of particles simultaneously to
avoid any difference in the forcing angles.

The results presented here confirm the presence of di-
rectional locking in deterministic systems at low Reynolds
numbers. The migration angle as a function of the forcing
direction exhibits a Devil’s staircase type of structure,
common to many phase-locking systems. The observed
trajectories are periodic and as a consequence the migra-
tion angles always correspond to a lattice direction. Also,
different particles might move in different lattice directions
for specific values of the forcing angle, resulting in sepa-
ration. The observed behavior is completely analogous to
that observed in microfluidic systems that induce size-
based separation by deterministic lateral displacement.
The reported trajectories in these microfluidic devices are
periodic and also indicate the presence of directional lock-
ing. Specifically, the authors observe the transition from a
locked state in the (0,1) direction for large particles (dis-
placement mode in Refs. [5,6,21]) to a locked angle that is
substantially closer to the flow direction for smaller parti-
cles (zigzag mode in Refs. [5,6,21]). The fact that the
orientation of the force in Ref. [5] coincides with the
(1,10) lattice direction makes it impossible to determine
whether the reported zigzag mode would actually follow
the flow for any forcing direction, as suggested by the
authors. Finally, the separation in these devices also seems
to take advantage of the first critical angle, which accord-
ing to the present results is the most sensitive to particle
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FIG. 4 (color online). = Migration angle vs forcing angle for
particles of the same size (¢ = 3.18 mm) but with different
densities. The symbols correspond to the average migration
angle. The lines correspond to the most probable angle.
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size. However, there are important differences between our
work and these microfluidic systems. First of all, and
except for the work in Ref. [5], the patterns of obstacles
are not the rotation of a square lattice, but a series of rows
of obstacles that are shifted in the lateral direction. In
addition, we use a uniform driving force (gravity) while
microfluidic devices commonly employ other driving
fields (electrophoretic fields or pressure-driven flows).
However, these other driving fields would lead to analo-
gous behavior in the presence of irreversible particle-
obstacle interactions, i.e., the presence of symmetric or
nonsymmetric trajectories depending on the impact pa-
rameter of the collision. Changing the driving force could
change b, for a given particle-obstacle pair, but given a
value of b, there is a unique phase-locking curve associ-
ated with it, independent of the driving field.

General design guidelines for the implementation of this
separation principle towards microfluidic devices can be
drawn from our work. First, the first critical angle exhibits
a strong dependence on the particle size, making it the
most promising angle for separation purposes (see Fig. 2).
Second, it is likely that the lateral displacement is governed
by short-range interactions that scale with interacting area
(interplay between hydrodynamic lubrication and nonhy-
drodynamic surface forces). As a result, the first critical
angle should increase with particle size, which is consistent
with our experimental results. Therefore, the obstacle size
has to be chosen to maximize the relative change in inter-
action areas between the different particle sizes and ob-
stacles. Finally, it is likely that the value of the forcing
angle will need to be chosen without an a priori knowledge
of the value of the critical impact parameter for all the
particle sizes in the system. In this likely scenario one can
choose a forcing angle by assuming an equal probability
distribution for the value of b, for each particle size. Based
on our observations and in the numerical results presented
in Ref. [19], we can assume that the critical collision
parameter is typically between b, = R/2 and b, = a; +
R, where R is the obstacle size and q; is the size of the
particle. Note that the first transition occurs when the
critical impact parameter becomes equal to the lateral
displacement between successive rows of obstacles, b, =
[sin(6). The chance of separation between two different
particles is then maximized for a forcing angle /sin(6) =
(BR + a; + a,)/4. The forcing angles obtained from this
probability analysis should provide a good starting point
for the design of an array for separation. For our experi-
ments, we would obtain 6 = 15° to separate 7.1 mm and
6 mm particles from 3 mm spheres, and § = 17° to sepa-
rate between 7.1 mm and 6 mm particles, which compares
well with our experimental results (see Fig. 2).

We have shown that the presence of irreversible inter-
actions between the moving particle and the obstacle dis-
rupts the symmetry of the trajectory, inducing a net lateral
displacement. Even though the resulting lateral displace-
ment is typically small, the periodic nature of the system
allows such lateral displacement to accumulate, thus am-

plifying the effect into a macroscopic change in the migra-
tion angle. Therefore, by controlling weak, short-range,
nonhydrodynamic forces, such as electrostatic forces, mi-
crofluidic devices employing periodic arrays should be
able to enhance the separation of species.
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