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We propose a mesoscopic circuit in the quantum Hall effect regime comprising two uncorrelated single-

particle sources and two distant Mach-Zehnder interferometers with magnetic fluxes, which allows us in a

controllable way to produce orbitally entangled electrons. Two-particle correlations appear as a conse-

quence of erasing of which-path information due to collisions taking place at distant interferometers and

in general at different times. The two-particle correlations manifest themselves as an Aharonov-Bohm

effect in noise, while the current is insensitive to magnetic fluxes. In an appropriate time interval the

concurrence reaches a maximum and a Bell inequality is violated.
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Introduction.—Interference phenomena are the most
prominent feature of quantum mechanics. Of particular
interest are interference effects in multiparticle states.
For example in optics, the Hanbury Brown–Twiss effect
[1] and the Hong-Ou-Mandel effect [2] both result from
two-particle interference of photons emitted by two inde-
pendent sources. In mesoscopics, electrons can play a role
similar to photons in optics. In an electrical circuit with
currents incoming from different (uncorrelated) equilib-
rium contacts, the noise can show interference even if the
currents exhibit no interference contribution [3].

Recently a single-particle emitter [4] was experimen-
tally realized on the basis of a quantum capacitor in a two-
dimensional electron gas in the integer quantum Hall effect
regime. Subject to an appropriate large amplitude potential
the capacitor emits a single electron during the first half-
cycle and a single hole during the second half-cycle. With
such an emitter it is possible to inject single electrons and
holes in a nonequilibrium state into an electrical conductor.
Injected particles can be guided by edge states and encoun-
ter splitters realized by quantum point contacts (QPC).
These states can be considered as an analogue of short
photon pulses produced by a laser. By using two such
sources and tuning the times when they emit particles,
one can force emitted particles to collide at some QPC.
Tuning can be achieved by varying the phase difference
between the two potentials acting on the capacitors. Such a
collision erases which-path information for particles leav-
ing the QPC, and it promotes the appearance of two-
particle correlation effects. Based on this simple idea an
electronic analogue of an optical Hong-Ou-Mandel inter-
ferometer was suggested [5]. This interferometer shows a
noise suppression due to two-particle correlations arising
locally when particles collide at a QPC.

In this Letter we propose a setup where two-particle
correlations arise nonlocally in time and in space. This is
particularly intriguing when the currents are magnetic-flux
independent, namely, when the width of the electron pulses
is small with respect to the arm length differences of the

Mach-Zehnder interferometers (MZIs) (see Fig. 1). Our
geometry resembles the optical Franson interferometer [6],
but the underlying physics is different. The uncorrelated
electrons (holes) emitted by the sources A and B and
propagating along different arms of the same interferome-
ter can collide at the interferometer exit if the times of
emission, defined by the potentials UAðtÞ and UBðtÞ, are
properly chosen. If the difference of the arm lengths for
both interferometers is the same, then the electron colli-
sions take place at both interferometers (possibly at differ-
ent times). This makes the two two-particle amplitudes
(with one electron going through the left and another going
through the right interferometers) indistinguishable, hence
interfering. Corresponding amplitudes are shown in Fig. 1
in dotted and dashed lines. Such an interference results in
two-particle correlations arising nonlocally in space and
time. As a direct manifestation of this interference, the
noise shows an Aharonov-Bohm effect [7] with the total

FIG. 1 (color online). Emitters A and B driven by potentials
UAðtÞ and UBðtÞ inject single particles into edge states (solid
lines). After scattering at a center QPC (C) particles reach Mach-
Zehnder interferometers with Aharonov-Bohm fluxes �L and
�R. The colored (dotted and dashed) lines show possible two-
particle amplitudes which lead to particle collisions erasing
which-path information.
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flux determined by both the magnetic fluxes �L and �R

threading the distant interferometers. We analyze the two-
electron state emitted by our setup and find it to be fully
entangled with collisions in place and completely disen-
tangled in the case that no collisions are present. We arrive
at the same conclusion by analyzing a Bell inequality [8],
which can be violated even at partial overlap of electron
wave packets.

The two-particle Aharonov-Bohm effect in electrical
conductors was discussed theoretically [9] and investigated
experimentally [10] in a Hanbury Brown–Twiss interfer-
ometer geometry [11]. The novelty of our proposal is the
quantized injection of electrons and the possibility of
controlling the appearance of two-particle correlations. In
comparison to proposals discussed in the literature for a
dynamical generation of entanglement [12], the present
scheme deals with electron-electron (and hole-hole) rather
then electron-hole entanglement.

Model and formalism.—The system is schematically
shown in Fig. 1. Two mesoscopic capacitors, A and B,
are contacted by QPCs, with reflection (transmission) co-
efficients rA (tA) and rB (tB), to chiral edge states. The
mesoscopic capacitors are driven by time-dependent, ho-
mogeneously applied potentials UAðtÞ and UBðtÞ, with
equal frequency � and a large amplitude such that the
capacitors serve as sources of single electrons and holes.
The particles emitted are transmitted or reflected at the
center QPC (C), with reflection (transmission) coefficients
rC (tC). Before reaching the contacts 1 to 4 the signals
traverse the lower (d) or upper (u) arms of two MZIs
[13,14], L and R, pierced by magnetic fluxes, �L and
�R. The beam splitters of the MZI have the reflection
(transmission) coefficients rl� (tl�) and rr� (tr�).

We use a scattering matrix approach [15,16] and de-
scribe the mesoscopic capacitor by a Fabry-Perot–like am-

plitude [15], S�ðt; EÞ ¼ r� þ t2�
P1

q¼1 r�
q�1eiqE���i�q

�ðtÞ,
� ¼ A, B, depending on the energy of an incoming particle
and the time it exits. Here �� ¼ h=��, and �� is the ca-
pacitor’s level spacing: �q

�ðtÞ¼ e
@

R
t
t�q��

dt0U�ðt0Þ. The

scattering matrix of the full system also depends on the

central QPC and the MZIs. A phase �uðdÞ
�� ðEÞ¼E�uðdÞ�� =@þ

��uðdÞ
� is accumulated when a particle coming from source

� traverses the upper (lower) arm of the interferometer
� ¼ L, R. The time for this traversal is �u�� (�d��), and the

phase ��u
�� ( ��d

��) depends on the magnetic flux. We are

interested in the case of slow driving, meaning that the
frequency � is much smaller than the inverse of the life-
time of particles in the cavity, without requesting restric-
tions on � with respect to the time scales related to the
entire system. In order to calculate the currents into con-
tacts 1 and 2, we need to know the scattering matrix
elements for scattering from contacts 1 and 2 into contacts
1 and 2. We find

S11ðt; EÞ ¼ rC½tlLtrLSAðt� �uLA; EÞei�u
LA
ðEÞ

þ rlLr
r
LSAðt� �dLA; EÞei�d

LA
ðEÞ�: (1)

The elements S12ðt; EÞ, S21ðt; EÞ, and S22ðt; EÞ are found
analogously, while the elements which describe the scat-
tering from contact 3 or 4 are time independent.
The current.—A periodic potential with period T ¼

2�=� results in a current at contact j [17],

IjðtÞ ¼ e

h

Z
dE

X1

n¼�1

X2

l¼1

½fðEÞ � fðEþ @n�Þ�

�
Z T

0

dt0

T
ein�ðt�t0ÞSjlðt; EÞS�jlðt0; EÞ: (2)

This equation is valid for finite frequency and arbitrary
amplitude driving. The current at contact, say, 1, I1ðtÞ ¼
RCI1AðtÞ þ TCI1BðtÞ (here TC ¼ 1� RC ¼ jtCj2), consists
of a current coming from source A (B) reflected (trans-
mitted) at the central QPC and passed through the inter-
ferometer L. At zero temperature, the partial current I1�ðtÞ,
� ¼ A, B, comprises a classical part due to the current

generated by the capacitor, I�ðtÞ ¼ e2

2�i
@U�

@t Sð0Þ�� ðtÞ�
@
@E S

ð0Þ
� ðtÞ, and an interference part,

I1�ðtÞ¼Rl
LR

r
LI�ðt��dL�ÞþTl

LT
r
LI�ðt��uL�Þ

þ e�L=�

�uL���dL�
ImfSð0Þ�� ðt��uL�ÞSð0Þ� ðt��dL�Þe�i�Lg:

(3)

The current in contact 2 is found analogously. Here we
introduced the instantaneous scattering matrix of the cavity

� at the Fermi energy �, Sð0Þ� ðtÞ ¼ S�ð�� eU�ðtÞÞ. The
transmission probability at each MZI beam splitter is Tj

� ¼
1� Rj

� ¼ jtj�j2, and �� ¼ ðRl
�R

r
�T

l
�T

r
�Þ1=2 is a product of

the reflection and transmission coefficients. Furthermore

the flux enclosed by the interferometer� is given by�� ¼
��u
� � ��d

�, in units of �0=ð2�Þ, where �0 ¼ h=e is the

magnetic-flux quantum. As the coherent emission of quan-
tized charge attracts our special attention, we now treat the
case of small transmission of the cavities’ QPCs, where the
current emitted by a cavity is a series of well separated
pulses of opposite sign for the emission of electrons and
holes. We resort to a description in the Breit-Wigner re-
gime, and assume that one electron and one hole are
emitted per period from cavity � at times te� and th�,
described by current pulses, having a Lorentzian shape
with half-width �� [17].
The last term in Eq. (3) is due to single-particle inter-

ference in one of the MZIs. Single-particle interference
appears when the wave functions traveling through the
upper and the lower arm of the interferometer have an
overlap at the interferometer exit, which is only possible
if the path difference of the interferometer arms is at most
of the order of the usual first-order coherence length. Thus
this interference term is suppressed as soon as the differ-
ence in the traversal times of the respective interferometer
� ¼ L, R, given by ��� ¼ �u�� � �d��, is large compared

to the half-width �� of a current pulse emitted by the
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source � ¼ A, B. The suppression of the single-particle
interference can therefore be used as a measure for the
spreading of the wave packet emitted by a driven capacitor.
The path difference is tunable in experiments by side gates
applied to the edge states [13]. We are now interested in the
situation where the flux dependence of the currents van-
ishes, and interference effects can be attributed to two-
particle correlations.

The noise.—Two-particle correlations can be observed
in the noise properties. We calculate the symmetrized zero-
frequency noise power (shot noise) [18] for currents flow-
ing into contacts 1 and 2. The equation for noise comple-
mentary to Eq. (2) reads

P 12¼e2

h

X1

n¼�1
signðnÞ

Z �

��n@�
dE

Z T

0

dt

T

Z T

0

dt0

T
ein�ðt�t0Þ

� X4

l;j¼1

S1lðt;EÞS�1jðt;EnÞS�2lðt0;EÞS2jðt0;EnÞ; (4)

where En ¼ Eþ n@�. If the arm length differences of the
MZIs are commensurate, �� :¼ ��L ¼ ���R, we find in
the zeroth order in ���,

P 12¼�P 0

X
s¼e;h

fTLTR½1�Lð�tsÞ�

��L�Rcosð�L��RÞ½Lð�ts���ÞþLð�tsþ��Þ�g;
(5)

with the classical MZI transmission probability T� ¼
Tl
�T

r
� þ Rl

�R
r
�. Here �ts ¼ tsA � tsB þ��AB depends on

the difference of emission times ts� and the time delay
��AB ¼ �u�A � �u�B due to the asymmetry of the setup;

the Lorentzians are defined by LðXÞ ¼ 4�A�B=½X2 þ
ð�A þ �BÞ2�, and P 0 ¼ ð2e2=�ÞTCRC� is (minus) the
shot noise produced by the central QPC alone [5].

The second line in Eq. (5) is a magnetic-flux-dependent
contribution, appearing under two conditions. First, the
interferometers have to be commensurate, ��L ¼ ���R.
Second, the emission times of the cavities are such that a
collision of two electrons (and/or two holes [19]) can take
place at the interferometer outputs, j�ts ���j � ��.
Both conditions together imply that the collisions take
place at both interferometers. That results in an appearance
of nonlocal two-particle correlations irrelevant for the
current but with a pronounced effect on the noise. In
Fig. 2 we show the shot noise for ��L ¼ ��R, as a func-
tion of the magnetic-flux difference and the phase shift ’
between potentials UAðtÞ ¼ UA cosð�tÞ and UBðtÞ ¼
UB cosð�tþ ’Þ acting on the capacitors A and B. We
choose the difference between electron and hole emission
times from the two sources to be equal. Each source emits
one electron and one hole during the periodT . Varying the
phase ’ we change the time teB when the capacitor B emits
an electron. At ’ ¼ ’0 the condition �te ��� ¼ 0 is
satisfied, and an electron emitted by the capacitor A and
moving along the lower arm of an interferometer can

collide (overlap) with an electron emitted by the capacitor
B and moving along the upper arm of the same interfer-
ometer (vice versa for ’ ¼ �’0). Therefore, a mere varia-
tion of the phase difference between the driving potentials
can switch on or switch off the two-particle Aharonov-
Bohm effect. Note the dip at ’ ¼ 0 is the fermionic Hong-
Ou-Mandel effect [5].
Entanglement.—Now we show that these correlations

are quantum; i.e., the emitted electrons are orbitally en-
tangled in pairs. The same, of course, is valid with respect
to holes. The degree of entanglement of the two-particle
state, expected whenever the shot noise of the system
becomes flux dependent, can be measured in terms of the
concurrence [20]. Awave packet created at the source A by

the operators Ây ¼ R
dkwðkÞeikvFðtA�tÞâyðkÞ acting on the

Fermi sea j0i is scattered into

Ây
outðtÞ ¼

Z
dkwðkÞ½tCtlRF u

Rĝ
y
R2ðkÞ þ tCr

l
RF

d
Rĝ

y
R1ðkÞ

þ rCt
l
LF

u
Lĝ

y
L2ðkÞ þ rCr

l
LF

d
Lĝ

y
L1ðkÞ�; (6)

where F u=d
� ¼ ei

��u=d
A� eikvFðtAþ�u=d

A�
�tÞ [analogously for B̂y

and B̂y
outðtÞ; for simplicity, we suppose that the wave pack-

ets have the same shape,wðkÞ]. The creation operators ĝðkÞ
are related to the wave packet detected at the four inter-
ferometer outcomes, representing the states j1iL, j2iL, j1iR,
j2iR (see Fig. 1). We consider a part of the outgoing
state corresponding to events with one particle to the left
and one particle to the right. Decomposing this out-

going two-particle state, j�outi ¼ Ây
outðtÞB̂y

outðtÞj0i ¼P
2
n;m¼1 �nmjniLjmiR, we choose the two observation times

tL and tR such that each basis state consists of a product of
single-particle states detected at the left and at the right
side of the system. The concurrence is calculated from C ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð��yÞ

q
[21]. Whenever the collision conditions lead-

ing to a flux dependence of the noise are not fulfilled, at
least three elements of � vanish, and the concurrence is

FIG. 2 (color online). Two-particle Aharonov-Bohm oscilla-
tions in the shot-noise correlation P 12 as a function of the
difference in magnetic fluxes �A ��B and difference of phase
’ of the potentials UAðtÞ and UBðtÞ.
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therefore zero, C ¼ 0. We consider now the time differ-
ences of the interferometer paths to be equal for the two
interferometers and choose the times fulfilling the collision
conditions as measuring times, tL ¼ tB þ �dBL ¼ tA þ �uAL
and tR ¼ tA þ �uAR ¼ tB þ �dBR. The concurrence is then

C ¼ 2TCRC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tl
RR

l
LT

l
LR

l
R

q
=ðT2

CT
l
RR

l
L þ R2

CT
l
LR

l
RÞ: (7)

Full entanglement, C ¼ 1, is obtained by tuning the capaci-
tors and choosing the appropriate measuring times, when
the transmission and reflection probabilities are all equal.

To witness the entanglement found above, which is
produced in definite bins of time, we use the violation of
a Bell inequality. Following Glauber [22] we introduce the
joint probability N 12 to detect one electron (a wave
packet) at the contact 1 at the time of collision tL and the
other electron at the contact 2 at the time of collision tR.
For simplicity we make no distinction between the time
when a particle passed the interferometer output and the
time of detection. This quantity can be calculated as fol-
lows: N 12 ¼ �N 12 þN 1N 2, where N j is the mean

number of electrons detected at the contact j ¼ 1, 2 at the
corresponding time, and �N 12 is a correlator. To calcu-
late, e.g., eN 1, we integrate the current I1ðtÞ, Eq. (2), near
tL over a time interval �m longer than the width of a current
pulse �� but shorter than the distance between different
pulses. We find N 1 ¼ RCT

l
LT

r
L þ TCR

l
LR

r
L and N 2 ¼

TCT
l
RT

r
R þ RCR

l
RR

r
R. To calculate �N 12, which is propor-

tional to the shot noise, we modify Eq. (4) in the following
way. The total shot noiseP 12 comprises contributions from
particles arriving at contacts at any time during the driving
period T . Since we are interested in the contribution of
electrons, we restrict the integral over t (t0) to the interval
�m around tL (tR). The time-resolved shot noise P 12ðtL; tRÞ
obtained thus defines �N 12 ¼ ð�=�ÞP 12ðtL; tRÞ=e2.
Calculations yield �N 12 ¼ �N A

12 þ �N B
12 þ �N AB

12 ,
where �N A

12 ¼ �RCTCT
l
LT

r
LT

l
RT

r
R and �N B

12 ¼�RCTCR
l
LR

r
LR

l
RR

r
R are due to the capacitors A and B

alone, and the correlation contribution,

�N AB
12 ¼ 2RCTC�L�RLð�te � ��Þ cosð�L ��RÞ; (8)

depends on the wave-packet overlap Lð�te ���Þ.
To test a Bell inequality [8,23] we use the four joint

probabilities to detect one electron at the contact 1 (or 3) at
the time tL and another electron at the contact 2 (or 4) at
time tR. For the normalized correlation function, E ¼
ðN 12 þN 34 �N 14 �N 32Þ=ðN 12 þN 34 þN 14 þ
N 32Þ, we find E ¼ Lð�te � ��Þ cosð�L ��RÞ if the
transmissions at all the QPCs are 1=2. The magnetic fluxes
�LðRÞ have no effect on the collision times tLðRÞ. Therefore,
we can choose four sets of�L ��R, obtaining four differ-
ent values of E (see, e.g., Ref. [23]) to maximally violate a

Bell inequality. This inequality holds for Lð�te � ��Þ>

1=
ffiffiffi
2

p
, i.e., even at partial overlap of wave packets; for � :¼

�A ¼ �B, we find the condition j�te ���j & 1:2�.
Conclusion.—Two uncorrelated but synchronized

single-particle emitters can produce entangled pairs of
electrons (holes). The orbital entanglement exists in bins
of time with a well defined position within the driving
period. Its key signature is a nonlocal Aharonov-Bohm
effect in distant loops. Simply changing the phase differ-
ence between the potentials driving the capacitors switches
the entanglement on or off in a controlled manner. A
successful realization of our proposal would open up new
perspectives for a coherent quantum electronics.
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