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Quantum Hall states that result from interaction induced lifting of the eightfold degeneracy of the

zeroth Landau level in bilayer graphene are considered. We show that at even filling factors electric charge

is injected into the system in the form of charge 2e Skyrmions. This is a rare example of binding of

charges in a system with purely repulsive interactions. We calculate the Skyrmion energy and size as a

function of the effective Zeeman interaction and discuss the signatures of the charge 2e Skyrmions in the

scanning probe experiments.
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The fourfold valley and spin degeneracy of Landau
levels (LLs) in monolayer and bilayer graphene, the re-
cently discovered two-dimensional semimetals [1–3], give
rise to interesting phenomena at high magnetic fields,
where the Coulomb interactions between the electrons
become important. In the monolayer, the Coulomb inter-
actions lift the LL degeneracy, giving rise to new spin- and/
or valley-polarized incompressible quantum Hall (QH)
states [4–6]. The effective Hamiltonian that describes the
Coulomb interaction within a single LL is approximately
SUð4Þ symmetric [7,8] with respect to the rotations in the
combined spin-valley space. The splitting of the LLs thus
corresponds to the spontaneous symmetry breaking of the
SUð4Þ-symmetric quantum Hall ferromagnet (QHFM).
The precise order in which spin and valley degeneracy
get lifted is determined by the interplay between the
Zeeman interaction and valley anisotropy [9,10], both of
which are much smaller than the Coulomb interaction. The
spin- and valley-polarized QH states in the monolayer were
predicted to feature unusual edge states [11,12], as well as
spin and valley Skyrmions [13], which are smooth topo-
logically nontrivial textures of the ferromagnetic order
parameter that carry the electron charge e [14].

Bilayer graphene features a LL at zero energy, which has
a twofold orbital degeneracy: In each valley there are two
zero-energy states (a ¼ 0; 1), with wave functions corre-
sponding to the ground state and the first excited state of
the magnetic oscillator [15]. Taking into account valley
and spin degeneracies, the zeroth LL in the bilayer is
eightfold degenerate. Coulomb interactions are expected
to lift the eightfold degeneracy [16]. In this Letter, we
consider the interaction induced QH states at even filling
factors and analyze their new properties arising due to the
orbital isospin. We shall see that these QH states exhibit
interesting collective and topological excitations. In par-
ticular, we predict that pairs of charge e excitations bind
into Skyrmions that carry charge 2e. Such a binding of
charges is surprising, because the Coulomb interactions
between electrons are purely repulsive. Another example

of such a binding was predicted to occur in the spin QHFM
with a small Zeeman interaction [17,18]. The weak pairing
of Skyrmions considered in Refs. [17,18], however, can
occur only when the Zeeman interaction is extremely
small; in contrast, charge 2e Skyrmions in bilayer graphene
can be thought of as robust tightly bound pairs, which exist
in a wide range of the effective Zeeman interaction.
Below, we analyze the dependence of Skyrmion energy

and size on the effective valley Zeeman interaction, which
can be tuned [19,20] by creating a potential difference
between the top and bottom layers: �v ¼ eEd [see
Fig. 1(a)]. Furthermore, we find that slightly away from
even filling factors, j��j ¼ j�� 2Mj � 1, there is a finite
density of charge-2e Skyrmions in the system. At a small
density, the Skyrmions form a triangular lattice, while
above a critical density ��� they form a bipartite square
lattice [21,22].
The zeroth LL states in different valleys reside solely in

the opposite layers. Therefore, any valley texture of the
order parameter directly translates into a spatial modula-
tion of the charge density in both layers. This results in a
spatial modulation of the local density of states (LDOS),
which can be probed directly by scanning tunneling mi-
croscopy (STM), owing to the fact that the surface of
bilayer graphene is exposed. Thus STM provides a way
to study the properties of a single charge 2e Skyrmion, as
well as the properties of a lattice of such Skyrmions. The
STM technique has already been employed to study elec-
tronic properties of the monolayer graphene with atomic
spatial resolution [23,24]. The STM technique enables
resolution of the LDOS features on the scale of �1 meV,
which should be sufficient to observe the LDOS modula-
tion in the QHFM, whose energy scale is set by the
Coulomb interaction, of the order of 10 meV at B ¼
10 T [11].
The effective Coulomb interaction Hamiltonian for the

zeroth LL in the bilayer is approximately SUð4Þ symmetric
in the valley-spin space; however, the symmetry in the
orbital isospin space is broken due to the different orbital
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wave functions of the two states [16]. This results in the
following picture of the zeroth LL splitting: At even filling
factors (� ¼ 2M filled sublevels) M pairs of orbital states
with the same valley and spin are filled, while the states at
odd filling factors � ¼ 2Mþ 1 are obtained from the � ¼
2M QH state by filling one of the remaining states with
orbital isospin a ¼ 0. This order of the zeroth LL splitting
is due to two facts: (i) Exchange energy within the LL with
isospin a ¼ 0 is higher than that for the LL with isospin
a ¼ 1; (ii) there is exchange energy between filled a ¼ 0
and a ¼ 1 LLs with the same spin and valley, which makes
the energy of the state where a ¼ 0; 1 LLs with the same
spin and valley are filled (e.g., 0K " and 1K " ) lower than
the energy of a state polarized in the orbital space along the
a ¼ 0 direction (e.g., 0K " , 0K0 " LLs are filled). The order
in which valley and spin degeneracies get lifted is deter-
mined by the competition between the symmetry-breaking
terms: the Zeeman interaction Ez ¼ g�BB and the effec-
tive valley Zeeman interaction �v. In the experiment �v is
typically small, and it can be tuned by gates [20]. We
assume that �v is tuned to be smaller than Ez.
Furthermore, we assume that �v is nonzero and favors
the K valley [25]. This leads to the splitting picture illus-
trated in Fig. 1(b). In the following, we shall be especially
interested in the states at filling factors � ¼ �2;þ2,
marked by arrows in Fig. 1(b). Since these two states are
related by the particle-hole symmetry, we shall focus on
the � ¼ �2 state.

We start with recalling the Landau level spectrum in the
bilayer graphene [15]. The low-energy excitations near the
K;K0 point are described by the Schrödinger equation
"c K;K0 ¼ HK;K0c K;K0 , with the Hamiltonian given by

HK;K0 ¼ � 1

2m

0 �y2
�2 0

" #
þ ĥw; ĥw ¼ �v3

0 �
�y 0

� �
;

(1)

where � ¼ px � ipy. For the K valley, the upper (lower)

component of the wave function corresponds to the ampli-
tude on the sublattice A ( ~B) [see Fig. 1(a)], which belongs
to the bottom (top) layer; for the K0 valley, the order of
components is reversed. The effective mass m can be ex-

pressed in terms of the ~AB interlayer hopping amplitude
�1 � 0:39 eV and the Fermi velocity in the monolayer
vF � 106 m=s, m ¼ �1=2v

2
F; � ¼ þ1 (�1) for the K0

(K) valley. The trigonal warping term ĥw originates from
the weak direct A ~B hopping �3 � �1 [15], with the effec-

tive velocity given by v3 ¼ ð ffiffiffi
3

p
=2Þ�3a, a ¼ 0:142 nm.

To analyze the Landau level spectrum, we choose the
Landau gauge Ay ¼ Bx, Ax ¼ 0, for which the eigenstates

can be classified according to the value of the wave vector
ky: c K;K0 ðx; yÞ ¼ eikyyc K;K0 ðxÞ. The wave vector ky trans-
lates into the guiding center position X ¼ ky‘

2
B, where

‘B ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@c=eB

p
is the magnetic length. Below, for simplicity

we shall choose units where ‘B ¼ 1. First let us ignore the
small trigonal warping term. Then the effective 1D
Hamiltonian for c K;K0 ðxÞ takes the following form:

HK;K0 ¼�@!c
0 a2X

ayX 2 0

" #
; aX ¼ i½@xþðx�XÞ�; (2)

where !c ¼ eB=mc is the cyclotron energy. The
Hamiltonian (2) has two zero modes with the following
wave functions: c a

K;K0 ðx; yÞ ¼ eiXyð0; ’a;XðxÞÞ, a ¼ 0; 1,

where’a;XðxÞ denotes the ath excited level of the magnetic

oscillator. Below, we shall denote the annihilation opera-
tors of the zero modes by ca;�;X, � ¼ K;K0. Including the

trigonal warping term ĥw does not change the energies of
the zero modes [15]. The corrections to the wave functions

of the zero modes due to ĥw are proportional to ðv3=vFÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1=@!c

p
[22]; for experimentally relevant field values

B� 20 T, the square root term is of the order of one, so
the corrections are negligible due to the smallness of the
ratio v3=vF � 1.
Now we proceed to the analysis of the zeroth LL split-

ting. We neglect the LL mixing, which allows us to project
the Coulomb Hamiltonian onto the zeroth LL:

Hint ¼ 1

2S

X
q��0

VðqÞ��ðqÞ��0 ð�qÞ; (3)

where �ðqÞ are the density operators restricted to the zeroth
LL, S ¼ LxLy is the sample volume, � and �0 are valley

indices, and the matrix element is given by VðqÞ ¼ 2�e2

"q .

The projected density components are given by

��ðqÞ ¼
X
a;b

FabðqÞ ��ab
� ;

��ab
� ðqÞ ¼ X

�X

expðiqx �XÞcya;�;X�cb;�;Xþ ;
(4)

where X�¼ �X�qy
2 , F00ðqÞ¼e�q2=4 and F11ðqÞ¼ ð1�

q2=2Þe�q2=4 are the usual form factors for the lowest LL
and the first excited LL, respectively, and F01ðqÞ¼�½ðqyþ
iqxÞ=

ffiffiffi
2

p �e�q2=4 and F10ðqÞ¼ ½ðqy� iqxÞ=
ffiffiffi
2

p �e�q2=4 are the

1
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FIG. 1 (color online). (a) Bilayer graphene lattice.
Perpendicular electric field E generates effective valley
Zeeman interaction �v ¼ eEd, where d ¼ 0:34 nm is the sepa-
ration between the layers. (b) The order of the zeroth LL
splitting, assuming that effective valley Zeeman interaction �v

favors K valley states and �v < Ez. (c) Texture corresponding to
the charge 2e Skyrmion at � ¼ �2. Vectors illustrate the rota-
tion of the order parameter in the valley space.
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form factors corresponding to the density components
which mix the two orbital states.

We now analyze the order in which the eightfold degen-
eracy of the LL gets lifted. The split QH states with filling
factor j�j 	 3 (�þ 4 filled sublevels) correspond to the
following wave functions:

j��i ¼
Y�þ4

i¼1

Y
X

dyi;Xj�i; dyi;X ¼ X
a;�;s

�Ui
a;�;sc

y
a;�;s;X; (5)

where �U is a unitary matrix, s is the electron spin, and� is
an empty zeroth LL.

To find the ground state for � ¼ �2, we compare the
energies of two states: (i) Two a ¼ 0 LLs with different

valley and/or spin indices are filled; for example, dy1 ¼
cy0;K;", d

y
2 ¼ cy

0;K0;", and (ii) a ¼ 0 and a ¼ 1 LLs with the

same valley and spin indices are filled; dy1 ¼ cy0;K;", d
y
2 ¼

cy1;K;". The energy of the first state is twice the exchange

energy of a nondegenerate lowest LL:

hHinti1 ¼ �2N�0; �0 ¼ 1

2

ffiffiffiffi
�

2

r
e2

"‘B
; (6)

where N is the total number of states in one nondegenerate
LL. Averaging the Coulomb interaction over the second
state, we obtain hHinti2 ¼ � 11

4 N�0. Thus the energy of the

second state is lower than the energy (6) of the first state,
and the spin- and valley-polarized state jc 0i is the ground
state at � ¼ �2. The state at � ¼ þ2 can be obtained from
jc 0i by charge conjugation.

Now we proceed to the excitations of the � ¼ �2 QH
state. The lowest-energy electron-hole pair at � ¼ �2 is
obtained by moving an electron with orbital isospin a ¼ 1
from the filled LL into one of the empty LLs. The energy of
such an excitation, Eeh ¼ 7

2 �0, is lower than the energy

E0
eh ¼ 4�0 of a particle-hole excitation that is obtained by

removing an electron with isospin a ¼ 0.
In some QHFMs, the lowest-energy charge excitations

are Skyrmions, which are topologically nontrivial smooth
textures of the order parameter [14]. On the qualitative
level, the textures carry charge because the charge and spin
or valley dynamics in the QHFM are entangled [14].

Can Skyrmions exist in bilayer graphene? Skyrmions of
charge e are energetically unfavorable because they in-
volve flipping valley isospin (or spin) for either a ¼ 0 or
a ¼ 1 states in some region, and in that region the filled
a ¼ 0 and a ¼ 1 states would have different valley isospin
(spin), which leads to a loss of the exchange energy �0 per
flipped valley isospin.

Another possibility is Skyrmions of charge 2e, which
can be created by making two identical valley textures for
a ¼ 0 and a ¼ 1 orbital states. Such textures are described
by a unit vector n, with nz ¼ �1 (þ1) corresponding to
filling K (K0) states. On the intuitive level, we expect such
textures to be energetically favorable: Since a ¼ 0 and
a ¼ 1 orbital states rotate simultaneously, no exchange
between 0 and 1 states is lost. Below, we find the energy

of the 2e Skyrmion and, by comparing it to the energies
of the single-particle excitations, establish that such
Skyrmions are indeed energetically favorable.
Before we proceed to the quantitative analysis of charge

2e Skyrmions, let us compare excitations at the even and
odd filling factors. For simplicity, let us consider the ex-
citations of the state � ¼ �3, which corresponds to filled
0K " LL. The lowest-energy electron-hole pair is obtained
by removing an electron from the 0K " LL and putting it in
the 1K " LL; owing to the exchange between 0K " and 1K "
states, the energy of such an excitation, Eodd

eh ¼ �0, is

lower than the energy ~Eodd
eh ¼ 2�0 of an excitation where

the excited electron resides in a LL with a different valley
and/or spin index. The existence of orbital Skyrmions at
� ¼ �3 is unlikely, because such Skyrmions correspond to
filling a ¼ 1 states in some region, which leads to a loss of
the exchange energy equal to �0=4 per flipped orbital
isospin.
Now we briefly describe the calculation of the energy of

a charge 2e Skyrmion. As a first step, we derive an effec-
tive Hamiltonian describing valley textures of the order
parameter:

jc i ¼ e�iÔjc 0i: (7)

In our analysis, we follow the microscopic approach de-
veloped in Ref. [26]; however, the dynamics of the order
parameter in the bilayer graphene is richer than that in the
case of SUð2Þ- and SUð4Þ-symmetric QHFM, owing to the
presence of the orbital degree of freedom. We parametrize

the rotation operator Ô as follows:

Ô ¼ X
q;a;b;�

�
�
abðqÞŜ�abð�qÞ; (8)

Ŝ
�
abð�qÞ ¼ X

�X

eiqx
�X
�
�
��0

2
cya;�;X�cb;�0;Xþ ; (9)

where � are the Pauli matrices. The rotation (8) is de-
scribed by four complex parameters:

ua ¼ �x
aa þ i�y

aa; a ¼ 0; 1;

v ¼ �x
10 þ i�y

10; w ¼ �x
01 þ i�y

01:
(10)

The parameters u0ðu1Þ correspond to rotations that in-
volve 0K and 0K0 (1K and 1K0) states, while v and w
parametrize rotations which transform 0K into 1K0, and 1K
into 0K0, and vice versa. To simplify calculations, we
assume that the rotations are small (juaj � 1, jvj � 1,
jwj � 1). Then we can expand the texture energy

E ¼ hc 0jeiÔy
He�iÔjc 0i � hc 0jHjc 0i in series in the

powers of Ô. This procedure yields an effective action
for general textures that involve ua, v, and w [27]. As a
next step, we restrict our attention to the low-energy ex-
citations, where a ¼ 0 and a ¼ 1 states are rotated simul-
taneously in the valley space [see Fig. 1(c)], which
corresponds to setting u0 ¼ u1 ¼ u. Integrating out v
and w variables [27], we obtain the energy of the low-
energy textures. For what follows, we rewrite the resulting
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energy functional in terms of theOð3Þ order parameter n ¼
ð�uy; ux; 0Þ:

Est ¼ �s

2

Z
d2rð@�nÞ2; �s ¼ 25

64�
�0: (11)

Although we derived the above equation assuming that n
deviates slightly from n ¼ ð0; 0;�1Þ, due to the rotational
invariance in the valley space Eq. (11) is valid for any
slowly varying configuration of the order parameter.

As our next step, we evaluate the charge density of the

texture 	� ¼ hc 0jeiÔy
�̂e�iÔjc 0i � hc 0j�̂jc 0i, where �̂

is the density operator. We find that the charge density is
twice the Pontryagin index density:

	�ðrÞ ¼ 2epðrÞ; pðrÞ ¼ � 1

8�
"��ðn½@�n� @�n�Þ:

(12)

This relation differs from the usual SUð2Þ QHFM case
[14,26] by a factor of 2, which corresponds to the fact
that the texture rotates states in both a ¼ 0; 1 LLs.

Apart from the stiffness term (11), there are two other
contributions to the texture energy: the valley Zeeman term
and the long-range Coulomb interaction:

Hz ¼ �vn0
Z

d2rnz;

Hcoul ¼ 1

2

Z
d2rd2r0

	�ðrÞ	�ðr0Þ
"jr� r0j ;

(13)

where n0 ¼ 1=2�‘2B is the LL density of states.
The simplest topologically nontrivial texture of the order

parameter n has topological charge 1 and an electric charge
�2e. This is to be contrasted with the usual Skyrmions
[14], which carry charge �e. In the limit of vanishing �v,
the Coulomb repulsion forces Skyrmions to be infinitely
large. Then the Skyrmion energy is determined solely by
the stiffness term

Esk ¼ 4��s ¼ 25

16
�0: (14)

The energy of the Skyrmion–anti-Skyrmion pair, 2Esk ¼
25�0=8, is lower than the energy of two electron-hole
pairs, which equals 7�0. Therefore, in the limit �v ! 0,
pairs of electron (hole) excitations bind into charge 2e
Skyrmions (anti-Skyrmions).

At finite �v the Skyrmion size ls is determined by the
competition between the effective valley Zeeman and
Coulomb energies [14]. Optimizing the Skyrmion energy
with respect to ls, we find with logarithmic precision

ls
‘B

�
�
9�2

32

�
1=3

~��1=3
v j log~�vj�1=3; (15)

where ~�v ¼ �v=ðe2="‘BÞ. The Skyrmion energy is in-

creased compared to the case �v ¼ 0, Eskð~�vÞ ¼ 25
16 �0 þ

A�0
~�1=3
v j log~�vj1=3, where A ¼ 34=3�5=6

211=6
.

We now briefly address experimental manifestations of
the charge 2e Skyrmions. STM can be used to study the
Skyrmion size (15) as a function of the valley Zeeman
interaction, as well as the properties of the Skyrme lattice
as a function of filling factor and valley Zeeman inter-
action. Finally, we note that, in samples with long-range
disorder, the charge-2e Skyrmions will lead to an even-odd
asymmetry in charging spectra of individual disorder-
induced quantum dots, which can be studied in scanning
single-electron transistor experiments [28].
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