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(Received 9 April 2009; published 13 August 2009)

We demonstrate that a surface resonance (pseudosurface wave) may transform into a true surface wave,

i.e., acquire an infinite lifetime, at a single isolated point within a bulk band (radiative region) in a model

of a stressed auxetic material. In contrast with the secluded supersonic elastic surface waves, the one

found here does not belong to a dispersion line of true surface waves. Therefore we propose to call it an

isolated true surface wave (ITSW). The ITSW manifests itself by a deltalike peak in the local density of

states and by anomalies in reflection coefficients. The phenomenon may be useful in redirecting energy

and/or information from the bulk to the surface in devices supporting guided acoustic waves.
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Auxetics are materials showing a negative Poisson ratio.
They, thus, increase their transverse dimensions when
stretched by a uniaxial tensile stress. The physical mecha-
nisms responsible for this apparently counterintuitive [1,2]
property often involve some slanted bonds or other quasi
rigid segments that under a tensile stress incline away from
the stretch axis [3–6]. The model treated here falls into this
category of auxetics although a number of materials are
known where a negative Poisson’s ratio results from an
interplay of occupied and empty electronic states [7].

Although the rigid segments seem to produce new,
virtually interesting, dynamical effects due to their rota-
tional degrees of freedom, the literature on the lattice
dynamics of auxetics is not abundant. Sparavigna [8] has
studied the out-of-plane motions in a structure resembling
the generic reentrant honeycomb lattice [6] and found a
complete stop band dependent on parameters of her sys-
tem. The present authors have shown an analogous pho-
nonic behavior for in-plane motions in a similar model
under external fields: dipolar [3] and quadrupolar [9]. The
Poisson’s ratio may then take any positive or negative value
and, as a consequence, the transverse acoustic wave may
become faster than the longitudinal one. The importance of
surface effects in many applications of auxetics (e.g., in the
arterial prostheses [10]) notwithstanding, the dynamics of
surfaces of auxetics remains a practically untouched
subject.

In the present Letter we show that the rotational degrees
of freedom, essential for the negative Poisson’s ratio in
many auxetics, may result in a true surface wave (TSW)
occurring at a single isolated point within a radiative region
of frequency on a surface of a modified reentrant honey-
comb structure. The phenomenon should be contradistin-
guished from the known secluded supersonic elastic
surface waves (SSESW) [11,12]. The latter form an entire
dispersion line of TSWs, whereas in our case the width of a
generally finite-lifetime resonance, also called pseudosur-
face wave (PSW [13,14]) tends to zero and its height

diverges to infinity at exactly one isolated point.
Therefore, we propose to call it isolated true surface
wave (ITSW). The present authors have already observed
such a behavior in a 3D isotropic continuum coated with an
intrinsically 2D surface layer [15] satisfying modified
equations of motion of thin membranes [2]. The ITSW
could then occur, be the underlying continuum auxetic or
not, at any desired wave vector, small wave vectors in-
cluded, provided that the 2D density and the stiffness of the
surface layer be properly chosen. The boundary conditions
adopted in Ref. [15] do not constitute, however, the
vanishing-thickness limit of an elastic continuum [16] so
that they should be treated as describing a specific meta-
material. Later on Every [17] reported on a similar effect
for an interface consisting of parallel coplanar equidistant
crevices in an otherwise homogeneous isotropic contin-
uum. The crevices were geometrically infinitely narrow but
at the same time wide enough as to allow the author to
apply the free-surface boundary conditions. A surface
resonance then narrowed to zero at a crossing point with
a dispersion line of secluded supersonic interfacial waves
close to the Brillouin zone border. Other true interfacial
waves were found in Ref. [17] strictly at the zone center on
an optical branch of surface resonances. The group veloc-
ities are low or just zero in both cases so that the propaga-
tion of these waves seems questionable.
The model treated here is systematically discrete with-

out any need for artificial metamaterial-like assumptions. It
is depicted in Fig. 1. The rigid rods of length 2d, mass m,
and moment of inertia � represented by thick solid lines
interact by elastic massless springs with the force constants
� and �. The actual lengths l�, l� of the springs and the

angle � depend on the external stress. For the sake of
specificity we take as a reference the geometry of the
reentrant honeycomb structure [6], i.e., the one with the

lattice parameters a0 ¼ 3d and b0 ¼ d
ffiffiffi
3

p
, so that l� ¼

l� ¼ d and � ¼ �=3. Then, limiting ourselves to the ten-

sile stresses �11 and �22, that do not break the symmetry
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C2m of the system, we define the geometry of the structure
by the actual lattice constants a and b or, equivalently, by
the relative extensions �11 ¼ a=a0 � 1 and �22 ¼ b=b0 �
1. The actual lengths of the springs then are l� ¼
1
2 d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 6�11 þ 9�211 þ 6�22 þ 3�222

q
and l� ¼ dð1þ

3�11Þ, whereas the stresses �11 and �22 needed to keep
the structure in equilibrium read

�11 ¼
2�l�ðl� � l�0Þ � �ðl� � l�0Þð2d� l�Þ

bl�
;

�22 ¼ b�ðl� � l�0Þ
l�ð2dþ l�Þ :

In what follows the free lengths l�0 and l�0 of the springs �

and � are equal to d and �=� ¼ 1. The stress-free state
then is that of the reentrant honeycomb geometry.

The study of the surface dynamics involves two steps.
First the bulk modes are found for the spatially unbound
material in the form of the Bloch waves w�ðr; tÞ ¼
e�ðk; !Þe�i!tþik�r, where k is a wave vector from the first

Brillouin zone, ! is a frequency and e�, � ¼ 1, 2, 3 is the

polarization vector. Indices � ¼ 1, 2 correspond to the
translational displacements of the rods and � ¼ 3 to their
angular displacements from the horizontal orientation. The
Newton’s equations of motion of the lattice then reduce to
systems of homogeneous linear equations for the un-
knowns e� for every wave vector k separately. The fre-

quencies !jðkÞ, j ¼ 1, 2, 3 of the lattice modes are

obtained from the condition detMðk; !Þ ¼ 0, where the
k-dependent 3� 3 matrix Mðk; !Þ is constructed accord-
ing to standard textbooks [18]. Projecting the dispersion
relations!jðkÞ onto the plane (kk,!), where kk is the wave
vector component parallel to the surface, one obtains the
radiative regions (bulk bands) for the corresponding ori-
entation of the surface. Given a wave vector kk and a

frequency ! the equation detMðkk; k?; !Þ ¼ 0 provides

the wave vector component k? perpendicular to the sur-
face. Real solutions for k? correspond to bulk waves
occurring in the radiative regions, whereas complex solu-
tions with Imk? > 0 describe near fields, also called eva-

nescent partial waves, that decay exponentially with the
distance from the surface into the bulk.
The second step in the analysis of the surface dynamics

then is to find such combinations of the aforementioned
bulk and evanescent partial waves that satisfy the equations
of motion of the surface layer. The equations are generally
different from those in the bulk because the surface rods
lack neighbors on their vacuum side and can have different
masses ms, moments of inertia �s and the force constant
�s. The number of equations of motion of the surface layer
equals the total number of the bulk waves and near fields
for given kk and !. The vanishing of the determinant of

these equations for frequencies outside the bulk bands
defines the surface waves that manifest themselves by
deltalike peaks in the local density of states (LDOS).
Peaks of the LDOS occurring in bulk radiative regions
are usually broad and finite in height. They correspond to
surface resonances (pseudosurface waves, PSW), i.e., ex-
citations with finite lifetimes.

FIG. 2 (color online). Bulk bands, dispersion curves of surface
waves (solid lines) and surface resonances (dashed lines) for (01)
surface of model with �=� ¼ 1, l�0 ¼ l�0 ¼ d, �11 ¼ 1

4 , �22 ¼
0, �s=� ¼ 10, ms=m ¼ �s=� � 34:61, �=m ¼ d2=3. Light
shaded areas correspond to single bulk wave and dark shaded
areas correspond to two bulk waves. Frequency is normalized toffiffiffiffiffiffiffiffiffiffi
�=m

p
.

FIG. 1 (color online). Model of 2D auxetic. Rigid rods (thick
solid lines) of length 2d interact by elastic force constants �
(dashed line) and � (dotted line). Masses ms, moments of inertia
�s, and force constant �s in the surface row may differ from their
bulk counterparts m, � and �.
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Figure 2 represents the bulk bands and the dispersion
curves of the surface waves on the (01) surface of our
model. The frequency in this and in the following figures

is normalized to
ffiffiffiffiffiffiffiffiffiffi
�=m

p
. The bulk parameters are l�0 ¼

l�0 ¼ d, �11 ¼ 1
4 , �22 ¼

ffiffiffiffi
21

p
4 � 1 that corresponds to �11

� ¼
2
ffiffi
7

p
7 and �22 ¼ 0. The vanishing of the stress component

�22 is not necessary but it produces interesting effects on
the wave reflection as discussed below. The dispersion
curves of surface waves visible in Fig. 2 have been ob-
tained with the following surface parameters:�s=� ¼ 10
and ms=m ¼ �s=� � 34:61 . . . . With this rather specific
choice the equations of motion of the surface layer admit a
solution involving exclusively evanescent partial waves at
a certain wave vector kk ¼ kITSW and a frequency !ITSW

within a bulk band. Figure 3 depicts the long wavelength
and low frequency region of Fig. 2. One can notice a
dispersion curve of surface waves entering the bulk band.
Thus, a deltalike peak in the local density of states trans-
forms into a broad maximum as is shown in Fig. 4. A
Lorentzian function has been fitted to the peak at each
wave vector kk and the inverse of its half-width has been

used to estimate the lifetime of the resonance. Figure 3
shows that the lifetime goes to infinity at the wave vector
kk ¼ kITSW. The height of the peak in LDOS in Fig. 4 also

tends to infinity at this point. The ITSW occurs at a single
point in the reciprocal space in contrast with the secluded
supersonic surface waves [11,12] forming an entire disper-
sion curve.
It is clear that the isolated true surface wave can be

easily excited by an external perturbation of the same
frequency and wave vector because it is unlikely that
such a perturbation be just orthogonal to the displacements
involved in this wave. The states of Fig. 4 are polarized in
(10) direction so that the LDOS presented there is propor-
tional to the transfer of power into the lattice under a unit
external oscillatory force applied parallel to the surface
rods. Because the ITSW is by definition decoupled from all
the bulk waves, its effect on the reflection of waves coming
to the surface from the material is expected for frequencies
somewhat detuned from!ITSW. This is illustrated in Fig. 5.
The slower acoustic wave of frequency !ITSW and unit
amplitude arrives at the surface at some incidence angle
and produces three reflected partial waves of amplitudes
R1, R2 and R3, respectively. The wave R1 is also slower
acoustic so that it satisfies the Snellius reflection law and
radiates into the bulk for all incidence angles. The faster
reflected wave R2 becomes an exponentially evanescent
near field beyond the point A in Fig. 5 and a damped-
sinusoidal near field with period doubling in the (01)
direction beyond the point C. For �22 ¼ 0 the partial
wave R3 behaves in a particular way. It, namely, decreases
at an infinite rate so that it is entirely confined to the surface
row of rods. Anomalies due to an ITSWoccurring when the
frequency is slightly detuned are depicted in the inset of
Fig. 5 for ! ¼ !ITSWð1þ 0:001Þ. Both evanescent partial
waves R2 and R3 show a sharp peak. Both near fields are,

FIG. 3 (color online). Long wavelength and low frequency
part of Fig. 2 (upper panel) and lifetime of surface resonance
transforming into isolated true surface wave (ITSW, lower
panel).

FIG. 4 (color online). Local density of states (LDOS) polar-
ized in (10) direction. Maximum of LDOS tends to infinity and
its width tends to zero at wave vector and at frequency corre-
sponding to ITSW. Surface resonance at higher frequency shows
no anomaly.
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thus, particularly enhanced at the corresponding incidence.
Moreover, the evanescent component R2. is practically
completely eliminated at a slightly lower and the compo-
nent R3 at a slightly higher incidence angle. An analogous
result, with however, reversed order of the eliminated near
fields has been obtained for frequencies lower than !ITSW.

The described isolated true surface wave occurs for
surface parameters specific to the given external stress.
Figure 6 shows the ratios ms=m (¼�s=�) and �s=� admit-
ting an ITSW at the same kITSW and !ITSW as in Figs. 2–5
as functions of the relative extension �11 with respect to the
stress-free reentrant honeycomb geometry at �=� ¼ 1. If
�s=� � 10:0 the existence range of the ITSW then is the
largest possible and extends from �11 � 0:00075 i.e. � �
�=3þ 0:0013 rad to �11 � 0:33245 i.e. � � �=2�

0:0013 rad. All the ranges lie entirely in the auxetic region
of the model, i.e., � < �=2. It is interesting that at weaker
force constant �s the surface mass ms may be as small as
about twice the mass m of the bulk rods. The extent of the
existence region of the ITSW then is, however, narrower.
ITSWs are not, of course, precluded in the nonauxetic
region of the model with a different choice of l�0, l�0
and/or �=�.
In summary, we show that a surface resonance can

transform into an isolated true surface wave (ITSW), i.e.,
to acquire an infinite lifetime, at a well defined point within
a bulk band on the (01) surface of a 2D auxetic lattice. The
stress needed for an ITSW to exist depends on parameters
of the surface. Reflection of certain bulk waves may then
result in a concentration of the vibrational energy in a well
defined evanescent partial wave. The phenomenon of an
ITSW may be useful in transferring energy and/or infor-
mation to a desired output (here along the surface) in some
analogy with the acoustic multiplexer [19].
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FIG. 6. Range of existence of the ITSW in terms of relative
extension �11 with respect to reentrant honeycomb structure.
Each line gives required mass ratio ms=m for force constants
ratio �s=� indicated on the right side. Dot corresponds to
parameters used in Figs. 2–5.

FIG. 5. Amplitudes of three waves: slower acoustic wave
(dotted line), faster acoustic wave (dashed line), and near field
confined totally in surface layer (solid line) arising from reflec-
tion of incident slower acoustic wave of unit amplitude as
functions of incidence angle at frequency !ITSW corresponding
to the ITSW. Inset: part of the same graph but for ! ¼
!ITSWð1þ 0:001Þ.
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