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We study small oscillations of the order parameter in weakly and strongly paired superconductors

driven slightly out of equilibrium, in the collisionless approximation. While it was known for quite some

time that the amplitude of the oscillations in a weakly paired superconductor decays as t�1=2, we show that

in a superconductor sufficiently strongly paired so that its fermions form bound states usually referred to

as molecules, these oscillations decay as t�3=2. The transition between these two regimes happens when

the chemical potential of the superconductor vanishes; thus, the behavior of the oscillations can be used to

distinguish weakly and strongly paired superconductors. Finally, we interpret the result in the strongly

paired superconductor as the probability of the molecular decay as a function of time.
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The study of quantum quenches, or the evolution of a
quantum system when its parameters suddenly change, ac-
quired prominence due to recent studies in Refs. [1,2]. Yet
a particular case of it, the study of small oscillations of the
order parameter in a perturbed superconductor, started
more than 30 years ago in Ref. [3]. This paper showed
that if a small perturbation is applied to a superconductor
leading to a deviation of its gap from its equilibrium value,
then this perturbation will evolve as cosð2�0tÞ=

ffiffi
t

p
, where

�0 is the equilibrium value of the gap. Thirty years later,
the authors of Ref. [4] showed that large oscillations of the
order parameter in a superconductor do not decay but in
fact continue forever (as long as the collisionless approxi-
mation remains valid). Subsequently, with the help of the
exact integrability of this problem [5], it was shown that
there exists a critical strength of the perturbation such that
if a perturbation beyond that strength is applied, it excites
oscillations which continue forever while perturbations
below that strength still decay, Refs. [6,7].

At the same time, advances in atomic physics allow now
to create superconductors out of ultracold fermionic atoms
whose interactions can be externally controlled. If the
interactions are weak, these artificial superconductors be-
have just like the usual superconductors of condensed
matter physics (termed BCS superconductors). But the
interactions can also be adjusted to be strong, in which
case these superconductors become more akin to a Bose
condensate (BEC) of diatomic bosonic molecules. As the
interactions are tuned, the superconductor is said to
undergo a BCS-BEC crossover (which is accompanied
by the chemical potential changing its sign). The possibil-
ity of this crossover was discussed in a number of papers
throughout the last four decades (see Refs. [8–10]), and it
finally was observed a few years ago (see Refs. [11,12]).

The unprecedented control over the interactions that the
ultracold gases provide allows to change them quickly, thus
easily creating an initial out-of-equilibrium perturbation by
a sudden change of their strength. A natural question which
arises in this regard concerns the fate of the oscillations,

decaying and persistent, as the superconductor undergoes
the BCS-BEC crossover. References [13,14] explored the
large nondecaying oscillations of a tunable superconductor
using the ansatz of Ref. [4]. However, this method was
found to break down as the superconductor is tuned to the
BEC regime, and it was not possible to tell whether this
was an artifact of the technique or an indication that an
oscillating solution is indeed not possible in a strongly
paired superconductor (see, however, Ref. [15]).
To remedy this situation, in this Letter we consider small

oscillations of the order parameter in a tunable supercon-
ductor. We show that as long as the oscillations remain
small, they always decay regardless of the strength of
interactions in the superconductor. However, while in the
BCS superconductor, the amplitude of these oscillations

decay as 1=
ffiffi
t

p
; in the BEC regime they decay as 1=t3=2.

The transition between the two regimes happens exactly
where the chemical potential � is equal to zero.
The theory we develop is based on the mean field

(collisionless) approximation. Thus, one can question its
validity near the unitary point [16] which lies between the
BCS and BEC regimes of the superconductors (at positive
chemical potential) and is known to go beyond the appli-
cability of the mean field theory [17] (see also Ref. [18] for
recent studies of the dynamics near this point). Therefore,
we repeat the calculation in the two-channel model [19]
describing BCS-BEC crossover with narrow Feshbach
resonance [20] where mean-field theory is applicable
throughout and recovers the same result. This shows that
an example of the BCS-BEC crossover exists whose order
parameter oscillations unambiguously obey the scenario
discussed here.
In the ‘‘deep BEC’’ side of the crossover, the supercon-

ductor becomes the Bose-Einstein condensate of the dia-

tomic bosonic molecules. In this regime, the result 1=t3=2

has a very simple interpretation. Indeed, as we will see in
this Letter, the order parameter of such superconductor is
proportional to the probability of finding two fermions of
opposite spins at the same position in space. As the super-
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conductor is perturbed, the wave function of a pair of
fermions no longer coincides with their bound state, but
rather consists of the linear combination of a bound and
excited states. The part of the wave function in the excited
states moves off to infinity so that the probability ampli-
tude to find two particles in the same spot decreases as

1=t3=2 reaching a limiting finite value at large t which in
turn follows from the behavior of a three dimensional
propagator of a free particle. In fact, in this deep BEC
regime, this is true not only with a small but also with a
relatively large initial perturbation (the precise criteria are
developed below), in which case this picture makes it clear
that the order parameter decays to a value smaller than the
equilibrium value, just like in the BCS regime with certain
perturbations [7]. However, to fully analyze the case of
large perturbations to the superconductor and to see
whether nondecaying solutions are possible in the BEC
regime, one needs to take advantage of the integrability of
the equations of motion, something which was done suc-
cessfully for the weakly paired superconductor and whose
strongly paired superconductor applications are left for
future work.

In what follows, we describe the derivation of these
results. Consider spin-1=2 fermions interacting via a short
range attractive s-wave interaction of strength �. Within
the mean field approximation, these fermions can be
studied on a strictly classical level. We accomplish this

by introducing the Cooper pair number np ¼ hây"pa"p þ
ây#pa#pi=2. The evolution of this number obeys the follow-

ing classical Hamiltonian, a classical version of the
Anderson-Richardson (or reduced BCS) Hamiltonian de-
scribing these kind of fermions,

H¼2�pnp��

V

X
p;q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1�npÞnqð1�nqÞ

q
cosð�p��qÞ;

(1)

where �p ¼ p2=ð2mÞ is the free fermion dispersion, �p is

the phase variable canonically conjugate to np, and V is the

space volume. The equations of motion of this Hamiltonian
have the following solution, corresponding to a stationary
superconductor

�0
p ¼ �2�t; n0p ¼ 1

2

�
1� �p

Ep

�
; (2)

where as always � is the chemical potential, t is time,

�p ¼ �p ��, Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
p þ �2

0

q
, and finally �0 is the equi-

librium gap of the superconductor which can be found
from the gap equation 1 ¼ �

2V

P
p

1
Ep
. Now consider the

initial conditions for the motion described by Eq. (1)
consisting of a small perturbation to the stationary solution
Eq. (2). In fact, it is most physical to take as initial con-
ditions Eq. (2) for a slightly different value of � ¼ �0 þ
��0 as well as the slightly different value of � (corre-
sponding to a superconductor whose interactions were

slightly perturbed in the initial moment of time). Then it
is straightforward to see, with the help of the particle
conservation condition

P
p�np ¼ 0, that the initial condi-

tions read

np ¼ n0p þ �n0p; �n0p ¼
�
�p �

~f0
f0

�
�0��0

2E3
p

; (3)

where f0 and ~f0 are defined below in Eq. (9). We then
expand the Hamiltonian Eq. (1) about the stationary solu-
tion to obtain the quadratic Hamiltonian for the deviations
�np, ��p. Subsequently we construct the solution to the

equations of motion of this Hamiltonian by using the
method of Green’s functions. The expanded Hamiltonian
takes the form

�H ¼ 1

2

X
p;q

½��p�pq��q þ �npKpq�nq�; (4)

where

�pq ¼�2
0

Ep

�pq� �

2V

�2

EpEq

; Kpq ¼
4E3

p

�2
0

�pq�
2��p�q

V�2
0

:

(5)

This represents a collection of harmonic oscillators,
labeled by the index p. Now it is possible to construct a
retarded Green’s function corresponding to these oscilla-
tors, with the end result

�npðtÞ ¼ i
X
q

Z 1þi0

�1þi0

�d�

2�
Gpqð�Þe�2i�t�n0q; (6)

where

Gpqð�Þ¼ �pq

�2�E2
p

þ �

2V

�f½�2�p�qþE2
qð�2��2

0Þ�� ~fð�pE
2
qþ�q�

2Þ
�2Epð�2�E2

pÞð�2�E2
qÞ½~f2þf2ð�2

0��2Þ� :

(7)

Here, we introduced the functions

f ¼ �

2V

X
p

1

Epð�2 � E2
pÞ
; ~f ¼ �

2V

X
p

�p

Epð�2 � E2
pÞ
:

(8)

In what follows, we will also need these same functions
evaluated at � ¼ 0, or

f0 ¼ � �

2V

X
p

1

E3
p

; ~f0 ¼ � �

2V

X
p

�p

E3
p

: (9)

The derivation of Eq. (7) is technical and not particularly
instructive, so it will be published elsewhere.
Armed by the explicit expression for the fluctuations

�npðtÞ, we can now discuss how to calculate the time

dependent gap function. It is easiest to study the square
of its absolute value,
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j�ðtÞj2 ¼ �2

V2

X
p;q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1� npÞnqð1� nqÞ

q
cosð�p ��qÞ:

(10)

In turn, this quantity can be decomposed into the sum of
�2

0, the square of the unperturbed gap, and the perturbation

�j�j2, given by

�j�ðtÞj2 ¼ 2�

V

X
p

�p�npðtÞ: (11)

We combine this with the initial conditions Eq. (3) as well
as with Eqs. (6) and (7) to find that

�j�ðtÞj2 ¼ i�0��0

�

Z 1þi0

�1þi0
�d�e�2i�t

�
~f2 þ f2ð�2

0 ��2Þ � ff0�
2
0 � f~f20=f0

�2½~f2 þ f2ð�2
0 ��2Þ� :

(12)

This equation represents the main result of this Letter.
While reducing to the main result of Ref. [3] at weak
pairing, it represents the generalization of their result to a
superconductor of an arbitrary pairing strength. The inte-
gration here goes over the straight line slightly above the
real axis, as shown on Fig. 1 with a dashed line.

We expect the functions f and ~f to have singularities on
the real axis where j�j hits the minimum of Ep and cuts at

larger j�j. It may seem that there is also a singularity at
� ¼ 0, but it is actually fictitious as the numerator of
Eq. (12) vanishes at � ! 0. At t < 0, the contour can be
closed in the upper half plane resulting in zero for the
integral as expected. At positive time t > 0, we can deform
the contour as shown on Fig. 1 by a solid line with arrows.
Then, at large positive times, the main contribution to the
integral comes from the vicinity of the singular points, or
the turning points of the new contour.

To evaluate f and ~f, we replace summation over p in
Eq. (8) by the integration over Vd3p=ð2�Þ3. In the BCS
regime, it is standard to pass to the integration over the
variable � ¼ �p �� so that d3p=ð2�Þ3 � �d�, where

� ¼ ffiffiffiffiffiffiffiffiffiffi
m3�

p
=ð�2

ffiffiffi
2

p Þ is the density of states, and then ex-

tend the integration over � all the way to the entire real

axis. Then ~f ¼ 0 as its integral is antisymmetric in �. At
the same time, f is given by

f ¼ i
��

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

0 ��2
q ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

�2
0

s
þ i

�

�0

�
: (13)

It is then easy to see that the integrand in Eq. (12) has a

singularity as� approaches �0 which goes as 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� �0

p
in agreement with the discussion above (�0 coincides with
the minimum of Ep). Introducing the variable s ¼ �� �0

and taking into account that at t � 1=�0 only small s
contributes to the integral, we find after adding both left
and right contours (which are complex conjugate of each
other)

�j�ðtÞj2 � Re e�2i�0t
Z 1

0

dse�istffiffiffi
s

p � cosð2�0tÞffiffi
t

p : (14)

Alternatively, in the BEC regime where �< 0, the inte-
gration measure in Eq. (8) must be kept as Vd3p=ð2�Þ3 and
both functions f and ~f are not zero. The minimum of Ep is

equal to Emin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

0

q
. The functions f and ~f are now

finite when j�j reaches Emin, but they are not regular at that

point. Generally, they behave as f� constþ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� Emin

p
.

The origin of such a drastically different behavior lies in
the fact that the minimum of Ep is reached when p ¼ 0.

Then, the potential divergence in the integral at � ¼ Emin

is removed by the p2 coming from the measure of integra-
tion p2dp. All this can be checked explicitly in the deep
BEC regime where j�j � �0 and the analytic expressions
behaving precisely in this way can be obtained by direct
integration.
Now if we substitute this into Eq. (12), we find that the

constant piece is single valued as� goes from the upper to
lower branch of the contour on Fig. 1, and therefore its
contribution from each of the contours cancels. So, it is the
square root part which contributes. This gives at large
times t � 1=Emin

�j�j2 � Re e�2itEmin

Z
dse�ist

ffiffiffi
s

p � cosð2tEminÞ
t3=2

: (15)

As we see, the transition from the behavior Eq. (14) and
(15) occurs exactly at � ¼ 0 as this is the point where the
minimum of the spectrum Ep shifts to p ¼ 0.

One can worry if this derivation really works for a
superconductor in the vicinity of the unitary point where
the mean-field theory breaks down. To have a controllable
theory, we repeated this calculation for the two-channel
model, based on the equations of motion introduced in
Ref. [13]. That model has an additional coupling g such

that if g2m2=n1=3 � 1 (here n is the density), then the two-
channel model is equivalent to Eq. (1) considered earlier in
this Letter. In the opposite limit, the two-channel model

Ω

FIG. 1. The contour of integration in Eq. (12) in the complex
plane of �. Dashed line shows the initial contour, while solid
black line, together with a dashed-dotted semicircle, is the
deformed contour. The dashed-dotted part of the new contour
can be deformed away to infinity and does not contribute.
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still undergoes a crossover but with the mean field theory
applicable throughout. The answer for the two-channel
model can be worked out using the same methods as the
ones described here. It looks almost identical to Eq. (12),

except in all occurrences of ~f and ~f0, one needs to sub-

stitute ~f ! ~f� 2�=g2, ~f0 ! ~f0 � 2�=g2. This replace-
ment does not change any of the arguments presented
here for the one-channel model; thus, all the conclusions
remain valid.

Finally, we observe that in the deep BEC regime, all
n0p � 1. Then the Hamiltonian Eq. (1) can be significantly

simplified, reducing in this limit to the Schrödinger equa-
tion of one pair of fermions in a delta-function potential, as
discussed at length in Ref. [10]. Replacing 1� np � 1,

and introducing the pair wave function c p ¼ ffiffiffiffiffiffi
np

p
ei�p , we

find H ¼ 2�pjc pj2 � �
V j
P

pc pj2 leading to

i@tc ¼ 2�pc p � �

V

X
q

c q: (16)

The ‘‘gap function’’ in this language is � ¼ �
P

pc p=V

which has an obvious meaning of the probability of finding
two opposite-spin fermions at the same point in space. We
can solve the linear equation (16) with arbitrary initial
conditions (as long as they satisfy jc 0

pj � 1) directly.

The solution for the gap function reads

�ðtÞ ¼ i
�

V

X
p

Z 1þi0

�1þi0

d�

2�
e�i�t 1

1þ�

c 0
p

�� 2�p
;

� ¼ �

V

X
p

1

�� 2�p
¼ constþ �m3=2

ffiffiffiffiffiffiffiffiffi��
p

4�

(17)

with c 0
p being the initial value of c p. To compute the

integral over �, we deform the contour of integration in a
way similar to that shown on Fig. 1. Unlike Eq. (12), the
integrand here has a simple pole at a negative value of� ¼
�b where �ð�bÞ ¼ �1, but similarly to Eq. (12) in the
BEC regime, it has cut at �> 0 where it behaves as

constþ i
ffiffiffiffiffi
�

p
. The pole corresponds to the bound state

and results in a contribution to �ðtÞ corresponding to the
bound molecule (that is, the equilibrium solution). The cut
produces the decaying behavior going precisely as 1=t;

thus, overall j�ðtÞj2 � j�fj2 þ A cosð�btÞ=t3=2 where A

is some constant [for comparison with Eq. (15), observe
that �b ¼ 2� in this regime]. However, now we see that
this decay is correct for arbitrary initial conditions, as long
as the applicability conditions jc 0

pj � 1 are satisfied. As

noted earlier, the value �f which the gap function decays

to can be proven to be smaller than the equilibrium value of

the gap. Indeed, initially we can expand c 0
p ¼ 	0c

ð0Þ
p þP

n	nc
ðnÞ
p where c ð0Þ

p is the bound state wave function,

c ðnÞ
p are the wave functions of the excited states corre-

sponding to the unbounded motion, and obviously j	0j<
1. At large times, the excited states move off to spacial

infinity and only the bound state contributes to
P

pc p,

leading to �f ¼ 	0�e, where �e ¼ �
P

pc
ð0Þ
p =V is the

equilibrium gap function, thus concluding the proof. This
should be contrasted with the method of small perturba-
tions used earlier in this Letter, which despite the state-
ments in Ref. [3] to the contrary cannot be used to deduce
whether the final gap is smaller or larger than its equilib-
rium value.
In conclusion, we showed that the amplitude of the small

oscillations of the order parameter in a superconductor

decays as 1=t1=2 in the BCS (�> 0) and as 1=t3=2 in the
BEC (�< 0) regimes. Applicability of this result to the
Fermi gas close to the unitary point remains an open
question. In cold atomic systems, these oscillations can
in principle be detected with the rf-absorbtion techniques
such as the ones used in Ref. [21]. It would also be very
interesting to see if, with modern STM-based techniques,
these oscillations can be detected in real superconductors
and whether this theory can be generalized to supercon-
ductors with the d-wave symmetry of the gap.
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