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It is shown that the application of a weak solenoidal magnetic field along the direction of ion beam

propagation through a neutralizing background plasma can significantly enhance the beam self-focusing

for the case where the beam radius is small compared to the collisionless electron skin depth. The

enhanced focusing is provided by a strong radial self-electric field that is generated due to a local

polarization of the magnetized plasma background by the moving ion beam. A positive charge of the ion

beam pulse becomes overcompensated by the plasma electrons, which results in the radial focusing of the

beam ions. The expression for the self-focusing force is derived analytically and compared with the results

of numerical simulations.
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Neutralization and focusing of charged particle beam
pulses by a background plasma form the basis for a wide
range of applications to high energy accelerators and col-
liders [1], ion-beam-driven high energy density physics
and heavy ion fusion [2], and astrophysics [3]. Even for
the simple case of charge bunch propagation through a
dense neutralizing background plasma, the bunch space-
charge is typically better neutralized than its current. As a
result, a net focusing (self-pinching) force is produced due
to the self-magnetic field [4]. The fundamental effect of
self-focusing was discovered over 50 years ago and has
been successfully utilized for a wide range of applications
involving charged particle beam transport and focusing.
For instance, self-focusing can compensate for the trans-
verse spreading of the ion bunch, thus providing self-
pinched ion beam transport over long distances [5]. The
effects of self-pinching become most pronounced when the
beam radius is small compared to the collisionless plasma
electron skin depth, rb < c=!pe. In this case the beam

current is almost unneutralized, and the self-magnetic field
is a maximum. Here,!pe is the electron plasma frequency,

and c is the speed of light in vacuo. In this Letter we
demonstrate that for an ion beam with rb < c=!pe the

self-focusing force can be significantly enhanced if a mod-
erately weak solenoidal magnetic field satisfying

!ce � �b!pe (1)

is applied along the beam propagation direction. Here,
!ce ¼ eB0=mec is the electron cyclotron frequency, B0 is
the magnitude of the applied magnetic field,�e andme are
the electron charge and mass, respectively, and �b ¼
Vb=c, where Vb is the longitudinal beam velocity. The

inequality in Eq. (1) can be expressed as B0 �
�bðnp½cm�3�=1011Þ1=2 kG. For ion beams with �b � 0:1

propagating through a background plasma with density
np � 1011 cm�3, this corresponds to a weak magnetic field

threshold of the order of 100 G. Although the influence of
the external magnetic force acting on the beam ions and
plasma ions is negligible in this regime, the plasma elec-
tron dynamics is significantly affected by the applied mag-
netic field. As a result, the moving ion beam polarizes the
magnetized plasma background, creating a strong radial
self-electric field, which provides the enhanced self-
focusing. Note that generation of a focusing radial electric
field implies that a positive charge of the ion beam pulse
becomes overcompensated by the background plasma elec-
trons. The effects of the enhanced self-focusing are of
particular importance for the neutralized drift compression
experiment (NDCX) and its upgrades, where the ion beam
pulse is first compressed ballistically as it propagates
through a background plasma, and is then focused on the
target by a strong (few Tesla) final focus solenoid [6]. A
weak magnetic fringe field (of the order of 100 G) can
penetrate far into the long drift section filled with a neu-
tralizing plasma, and can therefore provide conditions for
the enhanced focusing to occur, as shown below.
In order to analyze the self-focusing effect, we now

derive a general expression for the radial component of
the Lorentz force,

Fr ¼ ZbeðEr � �bB’Þ; (2)

acting on the ion beam pulse propagating through a back-
ground plasma along a uniform magnetic field B0 ¼ B0z.
Here, B’ and Er are the azimuthal component of the self-

magnetic field, and the radial component of the self-
electric field, respectively, and Zb is the charge state of
the beam ions. For simplicity, we assume immobile plasma
ions, cold plasma electrons, and investigate the axisym-
metric steady-state solution, where all quantities depend on
t and z solely through the combination � ¼ z� Vbt.
Assuming that the beam density is small compared to the
electron density (nb � ne), we solve for the collisionless
linear plasma response, in which the nonrelativistic plasma
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electron dynamics is governed to leading order by

meVb

@Ve

@�
¼ e

c
½Ve � B0� þ eE: (3)

Here, Ve is the electron flow velocity and we have made
use of @=@t ¼ �Vb@=@� for the steady-state electron re-
sponse. Applying the curl operator to the both sides of
Eq. (3) and making use of Faraday law, we readily obtain

meVb

@

@�

�
r� Ve � e

mec
B

�
¼ e

c
r� ½Ve �B0�: (4)

In cylindrical coordinates the ’ component of Eq. (4)
yields

meVb

@Vez

@r
¼ � e

c
B0Ve� � e

c
VbB� þmeVb

@Ver

@�
; (5)

and the radial component of Eq. (3) is

meVb

@Ver

@�
¼ e

c
Ve’B0 þ eEr: (6)

Using Eqs. (5) and (6) to determine Er � �bB’, we find

that the radial component of the Lorentz force in Eq. (2) is
given by

Fr ¼ ZbeEr � Zbe

c
VbB� ¼ ZbmeVb

@Vez

@r
: (7)

For the case where the beam current is fully neutralized,
i.e., neVez ¼ ZbnbVb, Eq. (7) takes on the simple form

Fr ¼ Z2
bmeV

2
b

1

ne

dnb
dr

: (8)

Equation (8) describes the total focusing force acting on
the beam ions, provided the beam current is neutralized.
Note that the same expression has been previously derived
in [5], for the special case where a magnetic field is not
applied (B0 ¼ 0), and the beam radius is large compared to
the electrons skin depth, i.e., rb � c=!pe. For this case,

the beam current is well neutralized [7], and therefore the
result for the total self-focusing force obtained in [5] is
consistent with the general analysis presented in this Letter.
If there is no externally applied magnetic field (B0 ¼ 0) the
beam current becomes unneutralized when the beam radius
is small compared to the electron skin depth [7] rb <

c=!pe, and Eq. (8) is not valid in that case. However, if a

weak magnetic field is applied, the beam current can be
effectively neutralized even in the regime rb < c=!pe. In

this Letter we show that in the presence of an applied
magnetic field, the condition for current neutralization
becomes

rb � rge � Vb

!ce

ð1þ!2
ce=!

2
peÞ1=2; (9)

i.e., the beam radius should be large compared to the
effective electron gyroradius rge defined in Eq. (9). Note

that condition in Eq. (9) can be satisfied even in the limit
rb � c=!pe provided !ce � �b!pe.

It is of particular importance to compare the self-
pinching force, F0, acting on the beam ions in the absence
of an applied magnetic field to the collective self-focusing
force, Fr, given by Eq. (8) for the case where the beam
radius is small compared to the electron skin depth. In the
absence of an applied magnetic field, in the regime where
rb � c=!pe, the beam current is not neutralized, Eq. (8) is

no longer a valid expression, and the self-magnetic field is
now given by

B’ ¼ 4�

cr
ZbeVb

Z r

0
r0nbdr0: (10)

The beam space-charge is well neutralized provided the
beam pulse duration is much longer than the plasma pe-
riod, !pe�b � 1, and therefore, the electric component of

the Lorentz force is small compared to the magnetic force
[7]. Substituting Eq. (10) into Eq. (2), we readily obtain for
the radial component of the self-pinching force

F0 ¼ � 4�Z2
be

2V2
b

c2r

Z r

0
r0nbdr0: (11)

The ratio of the collective self-focusing force in the pres-
ence of an applied magnetic field [Eq. (8)] to the self-
pinching force for !ce ¼ 0 [Eq. (11)] can be estimated as
Fr=F0 � ðc=rb!peÞ2 � 1. That is, the self-focusing of the

ion beam when rb � c=!pe is greatly enhanced by appli-

cation of a solenoidal magnetic field. Note that for a typical
ion beam injector aperture of the order of 1 cm, the beam
radius (�1 cm) is small compared to the electron skin
depth provided the beam and plasma density are in the
range of nb < np < 2:8� 1011=ðrb½cm�Þ2 cm�3, which

are typical parameters for several beam transport applica-
tions [2,6].
A significant increase in the self-focusing force in the

presence of a weak applied magnetic field has been ob-
served in electromagnetic particle-in-cell simulations
performed using the 2D cylindrical version of the LSP

code [8]. As an illustrative example, we consider a
Gaussian ion beam pulse with density profile nb ¼
0:14np expb�r2=r2b � ðz� �tÞ2=l2bc with effective beam

radius, rb ¼ 0:55c=!pe, and beam pulse half-length, lb ¼
1:875c=!pe (beam pulse duration �b ¼ 75=!pe), propa-

gating with velocity Vb ¼ 0:05c through a background
plasma with density np ¼ 1010 cm�3. The simulations in

Fig. 1 show the significant enhancement of the radial
component of the Lorentz force due to an applied magnetic
field of B0 ¼ 300 G. Furthermore, the results of the nu-
merical simulations are found to be in good agreement with
the analytical predictions given in Eq. (8) (solid pink curve
in Fig. 1). Note that the total normalized radial self-
focusing force (i.e., the sum of the electric and magnetic
components of the Lorentz force), Fr=Zbe, is plotted in
Fig. 1, and the units of electric field, V=cm, are chosen for
practical representation of its numerical value.
We now demonstrate that the beam current is indeed

effectively neutralized provided the condition in Eq. (9) is
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satisfied. Following Ref. [9], we analyze the reduced non-
linear equations governing the evolution of the electromag-
netic field and the nonrelativistic particles dynamics. We
express the induced magnetic field as B ¼ V �A and
make use of the transverse Coulomb gauge, r? �A ¼ 0.
Assuming a long beam pulse with lb � rb and !pe�b �
1, the displacement current can be neglected compared to
the electron current [7], and Ampere’s equations can be
expressed as [9]

� 1

r

@

@r

�
r
@Az

@r

�
¼ 4�e

c
ðZbnbVb � neVezÞ; (12)

@

@r

�
1

r

@ðrA�Þ
@r

�
¼ 4�e

c
neVe�: (13)

Here, Ve’ and Vez are the azimuthal and longitudinal

components of the electron flow velocity, respectively.
The electron flow velocity can be calculated making use
of the conservation of generalized vorticity [7,10]

�
@

@t
þ Ve � r

��
�

ne

�
¼

�
�

ne
� r

�
Ve; (14)

where the generalized vorticity is defined as � ¼
r� ðmeVe � eA=cÞ, and Ve is the electron flow velocity.
Projecting out the longitudinal and azimuthal components
of Eq. (14), we obtain [9]

Vez ¼ e

mec
Az � B0

4�meVbne

1

r

@ðrA�Þ
@r

; (15)

Ve’

�
1þ !2

ce

!2
pe

�
¼ e

mec
A’ þ B0

4�meVbne

@Az

@r
: (16)

In deriving Eqs. (15) and (16) we have taken into account,
for nb � ne, that the radial component of the electron

force balance equation gives Er ¼ �Ve’B0=c, where

Poisson’s equation can be used to determine the radial
electric field. Eqs. (12), (13), (15), and (16) can then be
used to calculate the self-magnetic field of the beam pulse.
Taking the radial derivative of Eq. (12) and making use of
Eqs. (13), (15), and (16) we obtain

� @

@r

�
1

r

@
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��
¼ 4�e

c
ZbVb
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þ 1

r2ge

@Az

@r

þ Vb!
2
pe

c2!cer
2
ge

A’ � @

@r

�
!2

pe

c2
Az

�
:

(17)

It now follows that the left-hand side of Eq. (17) is small
compared to the term r�2

ge ð@Az=@rÞ on the right-hand side,

and therefore the beam current is neutralized provided the
condition in Eq. (9) holds, i.e., provided rb � rge.

We emphasize that the nature of the self-focusing effect
is different for the cases where the external magnetic field
is zero or not. In the absence of an applied magnetic field,
the self-focusing force is due to the self-magnetic field of
the beam pulse. In contrast, if an external solenoidal mag-
netic field is applied, the beam current becomes well-
neutralized and the self-magnetic field is significantly sup-
pressed, provided the conditions in Eqs. (1) and (9) are
satisfied. Nevertheless, the total self-focusing force is in-
creased for the case where rb < c=!pe. Since the magnetic

component of the Lorentz force is suppressed, the main
focusing contribution comes from the strong radial electric
field. Figure 2(a) illustrates the radial component of the
self-electric field generated by an ion beam pulse propa-
gating through a magnetized background plasma. The
system parameters assumed in this simulation are the
same as for Fig. 1. The results of the numerical simulations
show that the contribution of the electric component to the
total Lorentz force (Fig. 1) constitutes more than 99%. It
should be noted that appearance of a sizable self-electric
field created by an ion beam propagating through a back-
ground plasma along a solenoidal magnetic field has been
recently investigated by Kaganovich et al. [9] for the case

FIG. 2 (color online). Plots of the radial self-electric field
corresponding to (a) B0 ¼ 300 G (!ce=�b!pe ¼ 18:7) and

(b) B0 ¼ 25 G (!ce=�b!pe ¼ 1:56). Other parameters are the

same as in Fig. 1. Zero value of the axial coordinate corresponds
to the beam center. Dashed lines correspond to the contour of
constant beam density corresponding to the effective beam
radius.

FIG. 1 (color online). Radial dependence of the normalized
focusing force at the beam center. The results of the numerical
simulations correspond to B0 ¼ 300 G and !ce=�b!pe ¼ 18:7

(blue circles), and B0 ¼ 0 (green diamonds). The analytical
results in Eq. (8) are shown by the solid pink curve. The
beam-plasma parameters correspond to Zb ¼ 1, rb ¼
0:55c=!pe, �b ¼ 75=!pe, �b ¼ 0:05, and np ¼ 1010 cm�3.

The dashed black curve corresponds to the beam radial density
profile.
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where !ce < 2�b!pe. However, for that regime, the radial

electric field provides a defocusing of the ion beam [9].
Moreover, the magnitude of the self-electric field increases
significantly as the value of the external magnetic field
increases from !ce < 2�b!pe to !ce � �b!pe. A de-

tailed analysis of the plasma response will be presented
in a follow-up publication [11]. Here we present the results
of numerical simulations demonstrating the polarity
change and the significant increase in the magnitude of
the radial electric field as the applied magnetic field in-
creases from B0 ¼ 25 G corresponding to !ce=�b!pe ¼
1:56 [Fig. 2(b)] to B0 ¼ 300 G corresponding to
!ce=�b!pe ¼ 18:7 [Fig. 2(a)]. Finally, it should be men-

tioned that the effect of the enhanced self-focusing is
robust and does not depend explicitly on the value of the
applied magnetic field, as can be seen from Eq. (8).

Note that the maximum value of the self-focusing force
can be achieved when Zbnb � ne and rb � rge, and is given

by Fr �mirb!ce!ci, provided !ce � !pe, where mi and

!ci are the mass and cyclotron frequency of the beam ions,
respectively. This value of the self-focusing force is of the
same order as the value of the collective focusing force
obtained by Robertson [12], for the case where an ion beam
propagates through a magnetic solenoidal lens carrying an
equal amount of neutralizing electrons. In this case, the
neutralizing electrons entering the lens experience much
stronger magnetic focusing than the beam ions and tend to
build up a negative charge around the lens axis. As a result,
an electrostatic ambipolar electric field develops that sig-
nificantly increases the total focusing force acting on the
beam ions. Note that the neutralizing electrons should enter
the lens from a region of zero magnetic field in order to
acquire the azimuthal angular momentum necessary for
radial focusing inside the lens. By contrast, for the case of
ion beam propagation through a background plasma along
a uniform magnetic field considered in this Letter, the
collective response of the plasma electrons to the ion
beam pulse provides the enhanced self-focusing force.
Furthermore, it has been demonstrated [13] that if back-
ground plasma (or background electrons) is present inside
the magnetic lens, then the collective focusing mechanism
described by Robertson is absent, since the neutralizing
rotating electrons are replaced by the background plasma
electrons inside the solenoid.

In conclusion, it should be emphasized that the enhanced
ion beam self-focusing can be of considerable importance
for the proposed neutralized drift compression experiment
(NDCX-II), which is designed to study energy deposition
by a highly compressed intense ion beam pulse onto a
target for warm dense matter physics studies [6]. To obtain
a short high-current ion beam pulse, a long, singly charged
lithium ion bunch carrying a current of Ib � 2 A is initially
accelerated to Vb � 0:032c as it is transported through a set
of transport magnets. Leaving the transport section, a
radially converging beam pulse (with beam radius, rb �
1 cm) acquires a head-to-tail velocity tilt and enters a long

drift section (Ld � 2 m) filled with a background plasma
(np � 1010–1011 cm�3), which neutralizes the beam space

charge and facilities the ballistic beam compression. To
provide the final transverse focusing, a strong magnetic
lens with magnetic field of BL � 8 T and length, l�
10 cm, is placed downstream of the beam line after the
drift section. For the parameters characteristic of NDCX-II
(�b � 0:032, np � 1011 cm�3, rb � 1 cm), the value of

the magnetic field determined from !ce ¼ 2�b!pe corre-

sponds to a weak magnetic field of Bc � 65 G. The fringe
magnetic field of the lens penetrates deep into the neutral-
izing plasma at a magnitude significantly larger than Bc,
thereby providing conditions for the enhanced beam self-
focusing. Note that for the NDCX-II parameters consid-
ered here, the beam radius is small compared to the elec-
tron skin depth, and therefore the self-focusing force is
large compared to the self-pinching force corresponding to
the case of zero applied magnetic field. Moreover, the self-
focusing effect during beam pulse propagation through the
neutralizing background plasma in the drift section can
become comparable to the applied focusing effect provided
by the 8 Tesla magnetic lens. Introducing the dimension-
less parameter � ¼ FsfLd=ðFLlÞ, where FL �mi!

2
cirb=4

is the magnetic focusing force acting on the beam ions
inside the lens, and Fsf �meV

2
b=rb is the self-focusing

force (nb � ne is assumed), we readily obtain that �� 0:5.
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