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The three-body recombination rate at threshold for distinguishable atoms with large negative pair

scattering lengths is calculated in the zero-range approximation. The only parameters in this limit are the

3 scattering lengths and the Efimov parameter, which can be complex-valued. We provide semianalytic

expressions for the cases of 2 or 3 equal scattering lengths, and we obtain numerical results for the general

case of 3 different scattering lengths. Our general result is applied to the three lowest hyperfine states of
6Li atoms. Comparisons with recent experiments provide indications of loss features associated with

Efimov trimers near the 3-atom threshold.
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Atomic gases allow the experimental study of super-
fluidity in systems in which the fundamental interactions
are simple and experimentally controllable. In the case of
fermionic atoms with two spin states, there have been
extensive investigations of the crossover from the BCS
mechanism (Cooper pairing of atoms) to the BEC mecha-
nism (Bose-Einstein condensation of diatomic molecules)
[1]. Fermionic atoms with three spin states open up the
possibility of new superfluid phases and new mechanisms
for superfluidity [2–5]. The first experimental studies of
such a system were recently carried out using the three
lowest hyperfine states of 6Li atoms [6,7].

Fermionic atoms with three spin states also open up new
possibilities in few-body physics. For the discussion of
three-body observables, they can simply be considered as
three distinguishable atoms, and their fermionic nature
plays no special role. If the pair scattering lengths are large
compared to the range of the interactions between the
atoms, a remarkable set of three-body phenomena is pre-
dicted. If the 3 scattering lengths are infinitely large, there
is an infinite sequence of 3-atom bound states called
Efimov trimers with a geometric spectrum and an accumu-
lation point at the 3-atom threshold [8]. Low-energy three-
body phenomena governed by discrete scale invariance are
generally referred to as Efimov physics [9,10]. The first
experimental evidence for Efimov physics was experi-
ments with ultracold 133Cs atoms by Grimm and co-
workers in which they observed dramatic dependence of
the three-body recombination rate and the atom-dimer
relaxation rate on the scattering length [11,12].

In this Letter, we present calculations of the three-body
recombination rate at threshold for distinguishable atoms
with large negative pair scattering lengths in the zero-range
limit. We provide semianalytic expressions for the cases of
2 or 3 equal scattering lengths, and we obtain numerical
results for the general case of 3 different scattering lengths.
We apply our general results to the three lowest hyperfine

states of 6Li atoms and compare with recent three-body
recombination rate measurements [6,7].
We consider an atom of mass m with three distinguish-

able states that we label 1, 2, and 3 and refer to as spin
states. We denote the scattering length of the pair i and j by
either aij ¼ aji or ak, where (ijk) is a permutation of

(123). The rate equations for the number densities ni of
atoms in the three spin states are

d

dt
ni ¼ �K3n1n2n3: (1)

By the optical theorem, the event rate constant K3 in the
low-temperature limit can be expressed as twice the imagi-
nary part of the forward T-matrix element for 3-atom
elastic scattering in the limit where the momenta of the
atoms all go to 0. By using diagrammatic methods, the
T-matrix element for elastic scattering can be expressed as
the sum of 9 amplitudes corresponding to the 3 possible
pairs that are the first to scatter and the 3 possible pairs that
are the last to scatter. For small collision energies, the
leading contributions to those amplitudes come from the
S-wave terms, which we denote by Aijðp; p0Þ, where p

(p0) is the relative momentum between the pair that scatters
first (last) and the third atom labeled i (j). The rate constant
K3 in Eq. (1) is

K3 ¼ 32�2

m

X
i;j

aiajImAijð0; 0Þ; (2)

where the sums are over i; j ¼ 1; 2; 3. The amplitudes
Aijðp; p0Þ can be calculated in the zero-range limit by

solving 9 coupled integral equations that are generaliza-
tions of the Skorniakov–Ter-Martirosian (STM) equation
[13]. To determine ImAijð0; 0Þ, it is sufficient to solve the
9 coupled STM equations for Aijðp; 0Þ:
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A ijðp; 0Þ ¼
1� �ij

p2
þ 2

�

X
k

ð1� �kjÞ

�
Z �

0
dqQðq=pÞDkðqÞAikðq; 0Þ; (3)

where

QðxÞ ¼ x

2
log

1þ xþ x2

1� xþ x2
; (4)

DkðqÞ ¼ ð�1=ak þ
ffiffiffi
3

p
q=2Þ�1; (5)

and � is an ultraviolet cutoff. The solutions to Eqs. (3) are
singular as p ! 0. The singular terms, which are propor-
tional to 1=p2, 1=p, and lnp, appear only in ReAijðp; 0Þ
for real p and can be derived by iterating the integral
equations [14]. Since ImAijðp; 0Þ must be extrapolated

to p ¼ 0, it is useful to transform Eqs. (3) into coupled

STM equations for amplitudes �Aijðp; 0Þ obtained by sub-

tracting the singular terms fromAijðp; 0Þ. For p � �, the

solutions depend log-periodically on � with a discrete

scaling factor e�=s0 � 22:7, where s0 ¼ 1:006 24. The de-
pendence on the arbitrary cutoff � can be eliminated in
favor of a physical three-body parameter, such as the
Efimov parameter �� defined by the spectrum of Efimov
states in the limit where all 3 scattering lengths are infi-
nitely large [9]:

En ¼ �ðe2�=s0Þ�n
@
2�2�=m ða12 ¼ a23 ¼ a31 ¼ �1Þ:

(6)

If we restrict � to a range that corresponds to a multi-
plicative factor of 22.7, then � differs from �� only by a
multiplicative numerical constant. Thus we can also simply
take � as the three-body parameter.

If aij > 0, there is a contribution to K3 from three-body

recombination into the shallow dimer whose constituents
have spins i and j and whose binding energy is @2=ðma2ijÞ.
If a12, a23, and a31 are all negative, there are no shallow
dimers. The solutionsAijðp; 0Þ to the coupled STM equa-

tions in Eq. (3) are all real-valued in this case, so the rate
constant K3 in Eq. (2) is predicted to be 0.

If there are deeply bound diatomic molecules (deep
dimers) in any of the three two-body channels, there are
also contributions to K3 from three-body recombination
into the deep dimers. If all 3 scattering lengths are negative,
these are the only contributions to K3. The coupled STM
equations in Eq. (3) do not take into account contributions
from deep dimers. The inclusive effect of all of the deep
dimers can be taken into account by analytically continu-
ing the Efimov parameter �� to a complex value [15]: �� !
�� expði��=s0Þ, where �� is a positive real parameter.
Making this substitution in Eq. (6), we find that the
Efimov states acquire nonzero decay widths determined
by ��. If we use the ultraviolet cutoff � as the three-body
parameter, the inclusive effects of deep dimers can be

taken into account by changing the upper limit of the
integral in Eq. (3) to �expði��=s0Þ, so the path of integra-
tion extends into the complex plane. Having made this
change, the solutions Aijðp; 0Þ are complex-valued even

if a12, a23, and a31 are all negative. The rate constant K3 in
Eq. (2) is a function of the scattering lengths a12, a23, and
a31 and the three-body parameters � and ��, and it van-
ishes as �� ! 0. It gives the inclusive rate for three-body
recombination into all deep dimers.
We focus our attention on cases in which all scattering

lengths are negative, so the only recombination channels
are into deep dimers. We first consider the case of 3 equal
scattering lengths: a12 ¼ a23 ¼ a13 ¼ a < 0. In this case
Eq. (3) reduces—after summing over i and j—to the STM
equation for identical bosons. In Ref. [15], Braaten and
Hammer deduced an analytic expression for the three-body
recombination rate constant for identical bosons with a
large negative scattering length a:

K3 ¼ 16�2C sinhð2��Þ
sin2½s0 lnðDjaj��Þ� þ sinh2��

@a4

m
; (7)

where s0 ¼ 1:006 24 and C andD are numerical constants.
This formula exhibits resonant enhancement for a near the

values ðe�=s0ÞnðD��Þ�1 for which there is an Efimov state
at the three-body threshold. Fitting our numerical results
for K3=a

4 as functions of a� and ��, we determine the
numerical constants to be C ¼ 29:62ð1Þ and D ¼
0:6642ð2Þ. These values are more accurate than previous
results for identical bosons [9]. A separate calculation of
the spectrum of Efimov states in the limit a ! �1 with
�� ¼ 0 is necessary to determine the relation between the
Efimov parameter and the ultraviolet cutoff: �� ¼
0:17 609ð5Þ�.
We next consider the case of 2 equal negative scattering

lengths and a third that vanishes: a12 ¼ a13 ¼ a < 0,
a23 ¼ 0. In this case with only two resonant scattering
channels, s0 ¼ 0:413 698, and the discrete scaling factor

is e�=s0 � 1986. Equation (7) again gives an excellent fit to
our numerical results, and we determine the numerical
constants as C ¼ 0:8410ð6Þ and D ¼ 0:3169ð1Þ.
We now consider the case of 2 equal negative scattering

lengths and a third that is unequal: a12 ¼ a13 ¼ a < 0,
a23 < 0. Equation (7) with s0 ¼ 1:006 24 continues to
provide an excellent fit to our numerical results. The fitted
values of C and D are shown as functions of a23=a in
Fig. 1. For ja23j � jaj, the coefficients seem to have the
limiting behaviors C � 10:88ð2Þða23=aÞ2 and D �
1:30ð1Þ. Their limiting behaviors for ja23j � jaj do not
seem to be simple power laws. This is not surprising,
because the discrete scaling factor 22.7 changes to 1986
when a23 ¼ 0.
Finally, we consider the general problem of 3 different

negative scattering lengths, for which we can obtain nu-
merical results for given values of a12, a23, and a13. We
apply our method to 6Li atoms in the three lowest hyperfine
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states jf;mfi: j1i ¼ j 12 ;þ 1
2i, j2i ¼ j 12 ;� 1

2i, and j3i ¼
j 32 ;� 3

2i. The 3 pair scattering lengths a12, a23, and a13
are shown as functions of the magnetic field in Fig. 2 [16].
They have Feshbach resonances near 834, 811, and 690 G,
respectively [17]. The zero-range approximation should be
accurate if ja12j, ja23j, and ja13j are all much larger than

the van der Waals length ‘vdW ¼ ðmC6=@
2Þ1=4, which is

approximately 62:5a0 for
6Li. There are two regions of the

magnetic field in which all 3 scattering lengths are negative
and satisfy jaijj> 2‘vdW: a low-field region 122 G<B<

485 G and a high-field region B> 834 G. In the low-field
region, the smallest scattering length is a12, and it achieves
its largest value �290a0 ¼ �4:6‘vdW near 320 G. The
zero-range approximation may be reasonable near this
value of B. In the high-field region, the smallest scattering
length is a13. It increases from �3285a0 at B ¼ 834 G to
�2328a0 � �37‘vdW at 1200 G. Thus the zero-range
approximation should be very accurate in this region. We
emphasize that the three-body parameters �� and �� need

not be the same in the two universal regions, since there are
zeros of the scattering lengths between them.
The three-body recombination rate K3 for

6Li atoms in
the three lowest hyperfine states has recently been mea-
sured by Jochim et al. [6] and by O’Hara et al. [7]. Their
results are shown in Figs. 3 and 4. In Ref. [6], K3 was
measured for each of the three spin states separately. Those
results have been averaged to get a single value of K3 at
each value of B. Both groups observed dramatic variations
in K3 with B, including a narrow loss feature near 130 G
and a broader loss feature near 500 G.
The narrow loss feature and the broad loss feature

observed in Refs. [6,7] appear near the boundaries of the
low-field region in which all 3 scattering lengths satisfy
jaijj> 2‘vdW. The zero-range approximation is question-

able near the boundaries of this region. We nevertheless fit
the data for K3 in this region by calculating the three-body
recombination rate using the B dependence of a12, a23, and
a13 shown in Fig. 2 while treating � and �� as fitting
parameters. Since the systematic error in the normalization
of K3 was estimated to be 90% in Ref. [6] and 70% in
Ref. [7], we fit only the shape of the data and not its
normalization. A 2-parameter fit to the data from Ref. [6]
in the region 122 G<B< 485 G gives � ¼ 436a�1

0 and

�� ¼ 0:11. The fit to the shape of the narrow loss feature is
excellent as shown in Fig. 3. Having fit the position and
width of the loss feature feature, the normalization of K3 is
determined. In the region of the narrow loss feature, the
prediction for K3 lies below the data of Ref. [6] by about a
factor of 2, which is well within the systematic error of
90%. The excellent fit to the shape of the narrow loss
feature and the prediction of the normalization of K3

consistent with the data suggest that this loss feature may
arise from an Efimov state near the threshold for atoms in
spin states 1, 2, and 3. As shown in Fig. 3, our fit predicts
that K3 should be almost constant in the middle of the low-
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FIG. 2 (color online). The scattering lengths for the three
lowest hyperfine states of 6Li as functions of the magnetic field
B [16]. The vertical scale changes by a factor of 10 at B ¼
600 G. The two vertical dotted lines mark the boundaries of a
region in which ja12j> 2‘vdW. The three vertical dashed lines
mark the positions of the Feshbach resonances.
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FIG. 3 (color online). The three-body recombination rate con-
stant K3 as a function of the magnetic field B. The two vertical
dotted lines mark the boundaries of the region in which ja12j>
2‘vdW. The solid squares and dots are data points from
Refs. [6,7], respectively. The curve is a 2-parameter fit to the
shape of the data from Ref. [6].
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FIG. 1 (color online). The coefficients C scaled by ða23=aÞ�2

(upper curve) and D (lower curve) in Eq. (7) as functions of
a23=a for the case of two equal negative scattering lengths a and
a third negative scattering length a23.
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field region and that there should be another narrow loss
feature at its upper end near 500 G. The data from both
groups in Fig. 3 increase monotonically in the middle of
the low-field region, and, instead of a narrow loss feature,
there is a broad loss feature near the upper end of this
region. We are unable to get a good fit to the slope of logK3

in the middle of the low-field region or to the shape of the
broad loss feature by adjusting � and ��.

In Ref. [7], the three-body recombination rate was also
measured at higher values of the magnetic field. They
include three data points in the region B> 834 G, where
all 3 scattering lengths are extremely large and negative. If
the central values of the last two data points are used to
determine the three-body parameters, we obtain � ¼ 37:0
a�1
0 and �� ¼ 2:9� 10�4. As shown in Fig. 4, this fit

predicts the resonant enhancement of the three-body re-
combination rate near 1160 G. If we allow for the system-
atic error by increasing or decreasing both data points by
70%, the position of the resonance does not change, but ��
increases to 5� 10�4 or decreases to 9� 10�5, respec-
tively. If we take into account the statistical errors by
increasing or decreasing the data points by 1 standard
deviation, the position of the resonance can be shifted
downward to 1109 G or upward to 1252 G. Thus it might
be worthwhile to search for an Efimov resonance in this
region. If such a feature were observed, measurements of
its position and width would determine accurately the two
three-body parameters �� and��. Our equations could then
be used to predict the total three-body recombination rate
in the entire universal region B> 610 G, including the
regions where 1, 2, or 3 of the scattering lengths are
positive. Note that the third-to-last data point in Fig. 4
shows no sign of the large increase in K3 near the

Feshbach resonance at 834 G that is predicted by our fit.
However, the measurement of K3 involves a model for the
heating of the system, and the failure of our fit at 835 G
might be attributable to the breakdown of that model near
the Feshbach resonance.
In summary, we have calculated the recombination rate

of three distinguishable atoms with large negative pair
scattering lengths in the zero-range limit. We have pro-
vided simple semianalytical expressions for the rate if 2 or
3 scattering lengths are equal. Using our general result for
3 unequal scattering lengths, we showed that the narrow
three-body loss feature for 6Li atoms with three spin states
[6,7] may be attributed to an Efimov state near threshold.
Our results provide a starting point for a quantitative under-
standing of the three-body loss rates and the unambiguous
identification of Efimov physics in these systems.
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FIG. 4 (color online). The three-body recombination rate con-
stant K3 as a function of the magnetic field B. The three vertical
dashed lines mark the positions of the Feshbach resonances. The
solid dots are data points from Ref. [7]. The curve is a 2-
parameter fit to the last two data points.
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