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A linear universal decay formula is presented starting from the microscopic mechanism of the charged-

particle emission. It relates the half-lives of monopole radioactive decays with the Q values of the

outgoing particles as well as the masses and charges of the nuclei involved in the decay. This relation is

found to be a generalization of the Geiger-Nuttall law in � radioactivity and explains well all known

cluster decays. Predictions on the most likely emissions of various clusters are presented.
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The first striking correlation between the half-lives of
radioactive decay processes and theQ values of the emitted
particle was found in �-decay systematics by Geiger and
Nuttall [1] as,

logT1=2 ¼ aQ�1=2
� þ b; (1)

where a and b are constants. However, the Geiger-Nuttall
law in the form of Eq. (1) has limited prediction power
since the coefficients a and b change for the decays of each
isotopic series [2]. It may also change within a single
isotopic chain when magic numbers are crossed [3].
Intensive works have been done trying to generalize the
Geiger-Nuttall law for a universal description of all de-
tected � decay events [4–9]. Here we present a truly
universal formula valid for the radioactivity of all clusters,
including � particles. This will allow us to search for new
cluster decay modes and to carry out a simple and model-
independent study of the decay properties of nuclei over
the whole nuclear chart.

We thus observe that the Q value dependence in Eq. (1)
is a manifestation of the quantum penetration of the �
cluster through the Coulomb barrier. But this equation
ignores the probability that the � particle is formed on
the nuclear surface starting from its four constituent nucle-
ons moving inside the mother nucleus. This is the cause of
the limitations of the Geiger-Nuttall law mentioned above.
In general the decay process, ranging from proton to
heavier cluster radioactive decays, can be described by a
two-step mechanism [10]. In the first step the formation of
the particle and its motion on the daughter nuclear surface
is established. In macroscopic models the clusterization
process is described by effective quantities adjusted to
reproduce as many measured half-lives as possible. This
procedure has shown to be very fruitful, providing a guide
to experimental searches. In the second step the cluster,
with the formation amplitude and corresponding wave
function thus determined, is assumed to penetrate the
centrifugal and Coulomb barriers [3–7,11]. The second
step has been well understood since the pioneering work
of Gamow. It is in fact one of the pillars of the probability

interpretation of quantum mechanics [11]. Its great impor-
tance in radioactive decay studies lies in the fact that within
a given cluster the penetrability process is overwhelmingly
dominant. This explains the great success of macroscopic
models in describing radioactive decay.
We intend here to include the cluster formation proba-

bility as well as the corresponding penetration through the
Coulomb barrier. We start from the R-matrix description of
the cluster decay process [10,12]. This is the basis of all
microscopic calculations of cluster decay [13]. The corre-
sponding decay half-life is,

T1=2 ¼ @ ln2

�c

� ln2

�

��������
Hþ

l ð�; �Þ
RFcðRÞ

��������
2

; (2)

where � is the outgoing velocity of the emitted particle
which carries an angular momentum l. R is a distance
around the nuclear surface where the wave function de-
scribing the cluster in the mother nucleus is matched with
the outgoing cluster-daughter wave function. For the dis-

tance R we will take the standard value, i.e., R ¼
R0ðA1=3

d þ A1=3
c Þ where Ad and Ac are the mass numbers

of the daughter and cluster nuclei, respectively. Hþ
l is the

Coulomb-Hankel function and its arguments are standard,
i.e., � ¼ ��R=@ and the Coulomb parameter is � ¼
2ZcZde

2=@� with � being the reduced mass and Zc and
Zd the charge numbers of the cluster and daughter nucleus,
respectively. The quantity FcðRÞ is the formation ampli-
tude of the decaying cluster at distance R. The penetrability
is proportional to jHþ

l ð�; �Þj�2. Equation (2) is valid for all

clusters and for spherical as well as deformed cases. The
ratio Nl ¼ RFcðRÞ=Hþ

l ðRÞ, and therefore the half-life it-

self, is independent of the radius R [13].
In microscopic theories the formation amplitude is eval-

uated starting from the single-particle degrees of freedom
of the neutrons and protons that eventually become the
cluster. This is generally a formidable task which requires
advanced computing facilities as well as suitable theoreti-
cal schemes to describe the clusterization process. It is
therefore not surprising that the first calculations of abso-
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lute decay widths (which require a proper evaluation of the
formation amplitude) were performed after the appearance
of the shell model. These calculations had limited success
due to the small shell model spaces that could be included
at that time. Only later, with better computing facilities, the
calculated half-lives started to approach the corresponding
experimental values. We will not deal with microscopic
theories here. For details and references on this subject,
including a historical background, see Ref. [13].

Our aim is to find few quantities that determine the half-
life. Expanding in these quantities we hope to be able to
find, at the lowest order of perturbation, an expression of
the half-life which is as simple as the Geiger-Nuttall law
but valid in general, i.e., for all isotopic series as well as all
type of clusters. With this in mind we notice that the
Coulomb-Hankel function can be well approximated by
an analytic formula, which for the l ¼ 0 channel reads
[14],

Hþ
0 ð�;�Þ � ðcot�Þ1=2 exp½�ð�� sin� cos�Þ�; (3)

where the cluster Q value is Qc ¼ ��2=2 and

cos 2� ¼ QcR

e2ZcZd

: (4)

One sees that cos2� would be a small quantity if ZcZd

is large, i.e., for heavy and superheavy systems. In
this case one can expand the last term in a power series

of cos�. By defining the quantities �0 ¼ ZcZd

ffiffiffiffiffiffiffiffiffiffiffiffi
A=Qc

p
and

�0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AZcZdðA1=3

d þ A1=3
c Þ

q
where A ¼ AdAc=ðAd þ AcÞ,

one gets, after some simple algebra,

logT1=2 ¼ a�0 þ b�0 þ log

�
cot� ln2

�R2jFcðRÞj2
�
þ oð3Þ; (5)

where a ¼ e2�
ffiffiffiffiffiffiffi
2m

p
=ð@ ln10Þ and b ¼

�4e
ffiffiffiffiffiffiffiffiffiffiffiffi
2mR0

p
=ð@ ln10Þ are constants (m is the nucleon

mass). The first two terms dominate the Coulomb penetra-
tion and oð3Þ corresponds to the remaining small terms.
But still the strong dependence of the half-life upon the
formation probability in the third term of Eq. (5) has to be
taken into account. It is very difficult to make a micro-
scopic calculation of the formation amplitude FcðRÞ. But
we can extract it from the experimental half-lives data by
using Eq. (2), i.e.,

logjRFcðRÞj ¼ 1

2
log

�
ln2

�
jHþ

0 ð�;�Þj2
�
� 1

2
logT

Expt:
1=2 :

(6)

Taking R0 ¼ 1:2 fm we evaluated the function
logjRFcðRÞj corresponding to � as well as heavier clus-
ters. We thus found that the formation probabilities of �
decays are located in the range logjRFcðRÞj ¼ �1:5 to

�0:75 fm�1=2. The stability of the � decay formation
amplitude explains the success of the Geiger-Nuttall and
other empirical laws where formation mechanism is not
explicitly embedded. However, for all observed cluster
decays, ranging from � to the heavier 34Si, the formation
amplitude changes as much as 8 orders of magnitude.
Yet we found that Eq. (5) can still be written as a simple

linear formula which properly takes into account the strong
dependence of the formation amplitude upon the cluster as
well as the mother nuclear structure to a first order of
approximation. This we have achieved by exploiting the
property that for a given cluster N0 � RFcðRÞ=Hþ

0 ð�; �Þ
does not depend upon R. Proceeding as above one readily
obtains the relation,

logjRFcðRÞj � logjR0FcðR0Þj þ 2e
ffiffiffiffiffiffiffi
2m

p
@ ln10

ð
ffiffiffiffiffiffi
R0
0

q
� ffiffiffiffiffiffi

R0

p Þ�0;

(7)

where R0 ¼ R0
0ðA1=3

d þ A1=3
c Þ is a value of the radius that

differs from R. Since for a given cluster any nuclear
structure would be carried by the terms RFcðRÞ and
R0FcðR0Þ in exactly the same fashion, Eq. (7) implies that
the formation amplitude is indeed linearly dependent upon
�0. Therefore one can write,

logT1=2 ¼ a�0 þ b�0 þ c: (8)

We emphasize here that the coefficient b in this relation is
different from that of Eq. (5). That is, the terms b�0 þ c,
which do not depend upon Qc, have to include the effects
that induce the clusterization in the mother nucleus.
Moreover, we found that the term logcot�=� in Eq. (5)
varies only slightly for all the cases investigated below,
from a minimum of 0.94 to a maximum of 1.2. The effects
induced by this variation, as well as the higher-order terms
in Eq. (5), are to be taken into account by a proper choosing
of the constants a, b and c.

FIG. 1 (color online). UDL plots for the � decays of even-even
nuclei with Z ¼ 78� 118. The straight line is given as a�0 þ c.
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Equation (8) holds for all cluster radioactivities. We will
call this relation the universal decay law (UDL). A straight-
forward conclusion from the UDL is that logT1=2 depends

linearly upon �0 and �0. For this to be valid, it should
include the Geiger-Nuttall law as a special case. One
sees that this is indeed the case since �0 remains constant

for a given �-decay chain and �0 / Q�1=2
c . Below we will

probe these conclusions, and the approximations leading to
them.

We will analyze g.s. to g.s. radioactive decays of even-
even nuclei. We select 139 � decay events from emitters
with 78 � Z � 108 for which experimental data are avail-
able. We take the data from the latest compilations of
Refs. [15,16] and the lists of Refs. [17,18]. For the decay
of heavier clusters we have selected 11 measured events
ranging from 14C to 34Si [19]. In order to perform the
calculations one has first to determine the values of the
constants a, b, and c. We carried out an extensive search of
the best values for these free parameters. Using a fitting
procedure for the case of � decay we obtained a ¼ 0:4065,
b ¼ �0:4311, and c ¼ �20:7889. The quality of the ad-
justment thus obtained can be seen in Fig. 1, where the
values of logT1=2 � b�0 as a function of �0 is shown. The
UDL reproduces the available experimental half-lives
within a factor of about 2.2. This compares favorably
with modern versions of the Geiger-Nuttall law [8].

A significant deviation of the UDL in the figure is the

nucleus 254Rf, at �0 ¼ 132:16 MeV�1=2, for which only
the lower limit of the half-life is available. This nucleus has
the value T1=2 > 1:5 ms experimentally [15]. The half-life

given by the UDL is T1=2 ¼ 42 ms, corresponding to a

branching ratio of b ¼ 0:055%. A more precise measure-
ment of this half-life would be a welcome additional test of
the UDL.

We will now analyze cluster decay processes by com-
paring the predictions of the UDL with the experimental
data corresponding to the decay of the even-even nuclei
mentioned above [19]. Using the parametrization set II in
Table I we plotted, as before, the quantity logT1=2 � b�0 as
a function of �0. As seen in the left part of Fig. 2 the
agreement between experiment and the UDL is excellent.
The UDL reproduces the available experimental half-lives
within a factor of about 4.1.

Finally we consider all decays together, i.e., � as well as
heavier clusters. Using the parameter set III of Table I we
obtained the results shown in the right panel of Fig. 2.
Again the agreement between the UDL and experiment is
excellent.
Using the UDL it is straightforward to evaluate the half-

lives of all cluster emitters throughout the nuclear chart if
reliable values of the binding energies are provided. This
we obtain by using the latest compilation of nuclear masses
[16]. With the Q values thus obtained we have evaluated
the decay half-lives of all isotopes included in that compi-
lation by applying the UDL. We thus found that in all cases
the experimental values lie between the ones calculated by
using the parameters of the sets I and III in Table I, con-
firming the prediction power of the UDL. We also found
that nuclei favoring cluster decays are mostly located in the
trans-lead region.
In Table I we also give the values of the coefficients a

and b as provided by Eq. (5). It can be seen that these
values are close to the corresponding fitted values, con-
firming that effects induced by logcot�=� and higher-order
terms in Eq. (5) are small.
In summary, we have presented in this Letter a simple

formula that provides with great precision the half-lives
corresponding to cluster decay. The formula is valid for all
kind of clusters and for all isotopic series, as expected since
we derived it from the general description of the decay
half-life. This formula is of a universal validity and there-
fore we call it universal decay law (UDL). There are a few
exceptions to this feature, in particular, the alpha-decay of
254Rf for which only the lower limit of the half-life is
available. The UDL predicts that this half-life should be
T1=2 ¼ 42 ms. A measurement of this number, as well as

other cases presented in this Letter for heavy and super-
heavy nuclei which may be of interest in present experi-
mental facilities, would be most welcome to probe the
extension of validity of the UDL. This law may also help
in the ongoing search of new cluster decay modes from
superheavy nuclei.

TABLE I. Coefficient sets of Eq. (8) determined by fitting to
experimental data in � decay (I), cluster decay (II) and both �
and cluster decays (III), respectively. The last column is given by
the Coulomb barrier penetration term of Eq. (5) with R0 ¼
1:2 fm.

I(�) II(cluster) III(�þ cluster) IV

a 0.4065 0.3671 0.3949 0.4314

b �0:4311 �0:3296 �0:3693 �0:5015
c �20:7889 �26:2681 �23:7615 FIG. 2 (color online). Same as Fig. 1 but for the heavier cluster

decays (left panel) and both � and cluster decays (right panel).
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