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Chemotaxis along helical paths towards a target releasing a chemoattractant is found in sperm cells and

many microorganisms. We discuss the stochastic differential geometry of the noisy helical swimming path

of a chiral swimmer. A chiral swimmer equipped with a simple feedback system can navigate in a

concentration gradient of chemoattractant. We derive an effective equation for the alignment of helical

paths with a concentration gradient which is related to the alignment of a dipole in an external field and

discuss the chemotaxis index.
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Biological microswimmers use flagellar propulsion or
undulatory body movements to swim at low Reynolds
numbers [1,2]. In addition to forward propulsion with
translational velocity v, any chirality in swimming stroke
results in a net angular velocity�. Hence, such a swimmer
moves along a helical path with curvature �0 ¼
j�� vj=jvj2 and torsion �0 ¼ j� � vj=jvj2 in the absence
of fluctuations [3]. Helical swimming paths have been
observed for sperm cells [4–7], eukaryotic flagellates
[8,9], marine zooplankton [10,11], and even large bacteria
[12]. A necessary condition for a pronounced helicity of
the swimming path of a chiral swimmer is given by j�j �
Drot where the rotational diffusion coefficient Drot � L�3

depends strongly on the size L of the swimmer [13,14].
Thus there is a critical size for a chiral swimmer below
which fluctuations diminish directional persistence and
interfere with helical swimming. The bacterium E. coli
for example is much smaller than the swimmers mentioned
above and fluctuations dominate over an eventual chirality
of swimming. Nevertheless, this bacterium can navigate in
a concentration field of a chemoattractant by performing a
biased random walk [13]. A larger swimmer moving along
a helical path can exploit a fundamentally different chemo-
taxis strategy: It has been shown both experimentally [5–
9,12,15,16] and theoretically [17,18] that such a chiral
swimmer can navigate in a concentration gradient of che-
moattractant by a simple feedback mechanism. Here we
study the impact of fluctuations and show that sampling a
concentration field along noisy helical paths is a robust
strategy for chemotaxis in three dimensional space even in
the presence of noise. The alignment of noisy helical paths
with a concentration gradient is formally equivalent to the
alignment of a polar molecule subject to rotational
Brownian motion in an external electrical field.

Stochastic differential geometry of noisy helical paths.—
We consider a chiral swimmer which propels itself with
translational velocity vðtÞ and angular velocity �ðtÞ along
a path rðtÞ. We introduce a comoving reference frame of
orthonormal vectors t, b, n ¼ b� t which comprises the
tangent t ¼ v=v with v ¼ jvj and a vector b that lies in the
plane spanned by v and �. The angular velocity can be

decomposed as� ¼ �ktþ�? ¼ v�tþ v�bwhere �ðtÞ
is the torsion of the path rðtÞ and �ðtÞ is a signed version of
the curvature [19]. The time evolution of this reference
frame is formally given by the Frenet-Serret equations _r ¼
vt, _t ¼ v�n, _n ¼ �v�tþ v�b, _b ¼ �v�n where dots
denote time derivatives. If the swimming stroke of the
chiral swimmer exhibits some variability, �ðtÞ and �ðtÞ
fluctuate around their mean values

�ðtÞ ¼ �0 þ ��ðtÞ; �ðtÞ ¼ �0 þ ��ðtÞ: (1)

Here �� and �� are stochastic processes with mean zero

and respective power spectra ~S�, ~S�, as well as a cross

power spectrum ~S�;� [20]. A particular example of curva-

ture and torsion fluctuations is studied below for the che-
motactic chiral swimmer. For simplicity, vðtÞ ¼ v0 is
assumed constant. The stochastic differential equations
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FIG. 1 (color online). (a) A helical path r can be described as
the trajectory of a point on the circumference of a disk which
rotates and translates; see text for details. (b) Helical swimming
path r of a chemotactic chiral swimmer in a linear concentration
field: The helix vector h3 fluctuates around the direction of the
concentration gradient rc. Parameters were v0 ¼ r0=�, �0 ¼
0:2=r0, ��1 ¼ �1 ¼ 0:5=r0, � ¼ �, �c0 ¼ 102=�, jc1j ¼
10�2c0=r0. (c) Histograms of z ¼ cosc where c equals the
angle enclosed by the helix axis and the gradient direction for a
simulated ensemble of helical swimming paths as in (b) with
initial distribution Pðz; 0Þ ¼ �ðzÞ at times t ¼ 10T, 100T. Also
shown is the analytical solution Pðz; tÞ (red). Approximately,
Pðz; 100TÞ equals the steady-state distribution P0ðzÞ � expðPezÞ.
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for the reference frame (r, t, n, b) involve multiplicative
noise and should be interpreted in the Stratonovich sense if
�� or �� is �-correlated.

In the noise-free case, �� ¼ �� ¼ 0, the path r is a
perfect helix with radius r0 ¼ �0=ð�2

0 þ �20Þ, pitch 2�h0 ¼
2��0=ð�2

0 þ �20Þ, and helix angle 	0 ¼ tan�1ðh0=r0Þ. We

define the helix reference frame (R, h1, h2, h3) by the
linear transformation

R ¼ rþ r0n; h3 ¼ sin	0tþ cos	0b; (2)

h1 ¼ �n and h2 ¼ h3 � h1. Here, RðtÞ is the center line
of the helical path rðtÞ and h3 is called the helix vector. The
helix frame can be interpreted as the material frame of a
solid disk with center R; see Fig. 1(a): The disk translates
and rotates such that a marker point on the disk’s circum-
ference traces the helical path r. For a perfect helix, _R ¼
�vh3, _h3 ¼ 0, _h1 ¼ !0h2, _h2 ¼ �!0h1 where �v ¼ !0h0
and!0 ¼ v0ð�2

0 þ �20Þ1=2 is the frequency of helical swim-

ming. The period of a helical turn is T ¼ 2�=!0.
In the presence of fluctuations, _R ¼ �vh3 þ v0r0ð��b�

��tÞ. The helix vector h3 performs a stochastic motion on
the unit sphere which is characterized by

hh3ð0Þ � h3ðtÞi � expð�t=tPÞ (3)

for times t longer than the correlation time of curvature and
torsion fluctuations. In the following, we determine the
persistence time tP in a limit of weak noise; the result is
given in Eq. (4). The rotation matrix HðtÞ with Hkl ¼
hkð0Þ � hlðtÞ is an element of SOð3Þ. The Lie algebra of
SOð3Þ is spanned by the infinitesimal rotations Ej with

ðEjÞkl ¼ 
kjl, j ¼ 1, 2, 3. The time evolution of HðtÞ is
given by a matrix-valued differential equation _H ¼ H � h
with infinitesimal rotation h ¼ !0E3 þ �jEj where we

use Einstein summation convention for j ¼ 1, 2, 3. From
Eqs. (1) and (2), we find �1 ¼ 0, �2 ¼ !0ðr0�� � h0��Þ,
and �3 ¼ !0ðr0�� þ h0��Þ. The rotation of the helix
frame after a time t consists of a rotation around h3ð0Þ
by an angle !0t and random rotations around all axes due
to the curvature and torsion fluctuations. We charac-
terize these random rotations by continuous stochastic
processes �jðtÞ with �jð0Þ ¼ 0 and write HðtÞ ¼
expð!0tE3Þ � expð�jEjÞ. Note that expð!0nTE3Þ ¼ 1
after n helical turns. The�j represent generalized rotation

angles: �1 and �2 describe rotations of h3. Symmetry
implies h�1i ¼ h�2i ¼ 0. We consider the limit of weak

noise characterized by j~S�ð!Þj, j~S�ð!Þj � �0=v0. One can
develop a systematic expansion in powers of the noise
strengths ��, �� with �2

� ¼ v0r0
R1
�1 dtjh��ð0Þ��ðtÞij

and analogously ��. We write ffi to denote equality to
leading order in ��, ��. For times t ¼ nT longer than
the correlation time of ��, �� but still shorter than T=ð�� þ
��Þ, we find h�2

1i ffi h�2
2i ffi 2Dt and h�1�2i ffi 0 with

4D ¼ ~S2ð!0Þ where ~S2ð!Þ ¼ !2
0½h20 ~S�ð!Þ þ r20

~S�ð!Þ �
2r0h0Re~S�;�ð!Þ	 is the power spectrum of �2. Hence, the

stochastic motion of the helix vector h3 can be effectively
described as isotropic rotational diffusion with rotational

diffusion coefficient D for long times. The computation of
h�2

1i and h�2
2i proceeds as follows:HðtÞ can be written as a

time-ordered exponential integral HðtÞ ¼ T exp
R
t
0 dt

0hðt0Þ.
To linear order in the noise strengths, �2 þ i�1 ffiR
t
0 dt

0�2ðt0Þei!0ðt�t0Þ. Next, h�2
1 þ�2

2i ffi
R
t
0 dt1 �R

t
0 dt2h�2ðt1Þ�2ðt2Þie�i!0ðt1�t2Þ � ~S2ð!0Þt. Similarly,

h�2
3i ffi ~S3ð0Þt where ~S3ð!Þ is the power spectrum of �3.

Hence the swimming path rðtÞ is a noisy helix with a center
line RðtÞ that follows a persistent random walk (on time-
scales larger than the correlation time of curvature and
torsion fluctuations) [21]. This persistent random walk
has a persistence time

tP ¼ ð2DÞ�1 ¼ 2=~S2ð!0Þ (4)

that is governed by the power spectra of the curvature and
torsion fluctuations evalutuated at the helix frequency !0

and a persistence length lP ¼ �vtP [22].
A chemotactic chiral swimmer.—We now consider a

chiral swimmer in a concentration field cðxÞ of chemo-
attractant equipped with a feedback mechanism which
allows it to dynamically adjust its curvature and torsion
in response to a chemotactic stimulus sðtÞ. The stimulus
sðtÞ ¼ P

j�ðt� tjÞ counts single chemoattractant mole-

cules detected by the swimmer at times tj. The rate q¼
hsi of molecule detection of the swimmer is assumed pro-
portional to the local chemoattractant concentration [23]

hsðtÞi ¼ qðtÞ ¼ �cðrðtÞÞ: (5)

When q is large compared to a typical measurement time
��1 of the swimmer and qðtÞ changes on a time-scale slow
compared to the mean inter-event-interval 1=q, then we
can replace sðtÞ by a coarse-grained version known as the

diffusion limit sðtÞ � qðtÞ þ ffiffiffiffiffiffiffiffi
qðtÞp

�sðtÞ where �sðtÞ is
Gaussian white noise with h�sðt1Þ�sðt2Þi ¼ �ðt1 � t2Þ. In
this limit � � 1 where � ¼ ðq�Þ�1=2 characterizes the
relative noise strength of sðtÞ for an averaging time �
[23]. The chemotactic stimulus sðtÞ is transduced by a
signaling system of the swimmer and triggers a chemo-
tactic response which we characterize by a dimensionless
output variable aðtÞ with a ¼ 1 for a time-independent
stimulus sðtÞ ¼ s0. We assume that aðtÞ affects curvature
and torsion in a linear way �ðtÞ ¼ �0 þ �1ðaðtÞ � 1Þ and
analogously for � [18]. Recall that swimming speed vðtÞ ¼
v0 is assumed constant. For the signaling system relating
stimulus sðtÞ and output aðtÞ, we use a simple dynamical
system which exhibits adaptation and a relaxation dynam-
ics [18,23,24]

� _a ¼ ps� a; � _p ¼ pð1� aÞ: (6)

Here pðtÞ is a variable representing a dynamic sensitivity;
� is a relaxation time and � is a time-scale of adaptation.
For a time-independent stimulus sðtÞ ¼ s0, the system (6)
reaches a stationary state with a ¼ 1, p ¼ 1=s0. Small
periodic variations of the stimulus sðtÞ ¼ s0 þ s1 cos!t
evoke a periodic response of the output variable
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aðtÞ ¼ 1þ s1Re~�að!Þei!t þOðs21Þ with linear response
coefficient ~�að!Þ ¼ i!�=½s0ð1þ i!�� ��!2Þ	.

Swimming in a concentration gradient.—We consider a
chemotactic chiral swimmer in a linear concentration field
of chemoattractant cðxÞ ¼ c0 þ c1 � x. Figure 1(b) shows
an example of a stochastic swimming path rðtÞ in such a
linear concentration field. In the simulation, the chemo-
tactic chiral swimmer detects individual chemoattractant
molecules arriving at random times [23].

We characterize the chemotaxis mechanism of a chiral
swimmer in the limit where both chemoattractant concen-

tration c0 is high with � ¼ ð�c0�Þ�1=2 � 1, and the con-
centration gradient is weak with 
 ¼ jc1jr0=c0 � 1. The
concentration gradient c1 is a sum c1 ¼ ckh3 þ c?, where
c? ¼ c1 � ckh3 with ck ¼ c1 � h3 and c? ¼ jc?j. While

the swimmer moves in the concentration field along the
noisy helical path rðtÞ, the binding rate qðtÞ varies with
time. In the limit of weak noise and a weak gradient, we
approximate qðtÞ by the value for qðtÞ obtained for swim-
ming along the unperturbed path with chemotactic feed-
back switched off qðtÞ=� � c0 þ ckð0Þ �vtþ c?ð0Þr0 �
cosð!0tþ ’0Þ where ’0 is the angle enclosed by c?ð0Þ
and h1ð0Þ. It is this periodic modulation of qðtÞ which
underlies navigation in a concentration gradient as it
causes a bias in the orientational fluctuations of h3: The
stimulus sðtÞ elicits a periodic modulation of the average
curvature and torsion with amplitude proportional to c?.
As a consequence, the generalized rotation angles �1 and
�2 which describe rotations of h3 have nonzero ex-
pectation values that scale with c?, h�2 þ i�1i ffi
c?"~�að!0Þei’0t with " ¼ �!0r0ðr0�1 � h0�1Þ=2. Simi-
larly, h�3i ffi ck �"twith �" ¼ �!2

0h0ðr0�1 þ h0�1Þ=c0 [18].
We can now derive an effective stochastic equation of

motion for the helix frame in the limit �, 
 � 1 by a
coarse-graining procedure as outlined in [23]. The
Stratonovich stochastic differential equation for the helix
frame

_R ¼ �vh3; _h3 ¼ "Re½~�að!0Þc	 þ ��2h1 � ��1h2

_hj ¼ �ð _h3 � hjÞh3 þ 
k3j �!hk; j ¼ 1; 2 (7)

generates the statistics of the noisy helical path to leading
order in 
 and �. Here �! ¼ !0 þ �"ck and c ¼
c? þ ih3 � c?. Equation (7) contains a multiplicative

noise term �2h1 � �1h2, where ��j denotes Gaussian white

noise with h ��kðt1Þ ��lðt2Þi ¼ 2D�kl�ðt1 � t2Þ. Here D plays
the role of a rotational diffusion coefficient and is given by
D ¼ j"~�að!0Þ=r0j2c0=�. Note that D is concentration de-
pendent with D� 1=c0. In the deterministic limit ��1 ¼
��2 ¼ 0, we recover the results from [18]. Equation (7)
provides a coarse-grained description of the time evolution
of the helix frame on time-scales larger than the correlation
time � of curvature and torsion fluctuations.

Effective dynamics of the alignment angle.—In a linear
concentration field, the quantity of interest is the alignment
angle c enclosed by the helix vector h3 and the direction
of the gradient c1 [18]; see Fig. 1(a). The symmetries of the

problem imply that the dynamics of c decouples from the
other degrees of freedom of the helix frame. From (7), we
find by using the rules of stochastic calculus

_c ¼ �� sinc þ �þD cotc : (8)

Here � denotes Gaussian white noise with h�ðt1Þ�ðt2Þi ¼
2D�ðt1 � t2Þ. The alignment rate is � ¼ jrcj"Re~�að!0Þ.
In the absence of fluctuations, we recover the deterministic
limit _c ¼ �� sinc [18]. In this limit, the steady state is
characterized by either parallel alignment of helix vector
and concentration gradient with c ¼ 0 for �> 0 or by
antiparallel alignment with c ¼ � for�< 0. Equation (8)
contains a noise-induced drift term D cotc which diverges
for c ¼ 0 and c ¼ � implying that noise impedes perfect
parallel or antiparallel alignment of the helix vector.
The corresponding Fokker-Planck equation for the

probability distribution Pðz; tÞ of z ¼ cosc with jzj 
 1
reads _P ¼ �@z½ð1� z2Þð��D@zÞ	P. Figure 1(c) com-
pares Pðz; tÞ to a histogram of z obtained from simulating
105 chemotactic chiral swimmers in a linear concentration
field. The distribution Pðz; tÞ relaxes to a steady-state dis-
tribution P0ðzÞ � expð�z=DÞ on a time scale which is set
by the inverse alignment rate ��1. This steady-state dis-
tribution P0ðzÞ has its maximum at z� ¼ �1 for � _ 0,
respectively. The first moment of P0ðzÞ is given by the
Langevin function [25]

hzi ¼ cothðPeÞ � Pe�1; Pe ¼ �=D; (9)

where Pe describes a Peclet number of rotational motion.
Note that this result for the mean orientation of a chemo-
tactic chiral swimmer is formally equivalent to the orien-
tation of a polar molecule in an external electrical field:
Eq. (9) with Pe replaced by jmjjEj=ðkBTÞ also describes
the mean orientation hzi ¼ hm �Ei=ðjmjjEjÞ of a polar
molecule with dipole moment m subject to rotational
Brownian motion in an electric field E [25]. Note that
Eq. (9) characterizes an active process while a polar mole-
cule is an equilibrium system.
At steady state, a chemotactic chiral swimmer moves up

a concentration gradient with average speed hzi �v. The
chemotaxis index CI is defined as the ratio of this average
speed gradient-upwards and the swimming speed v0

CI ¼ hziCImax; CImax ¼ �v=v0 ¼ sin	0: (10)

For gradients with jrcj * j"j=ð�r0Þ2, we have Pe * 1 and
CI approaches a maximal value CImax which is limited only
by the geometry of helical swimming.
Relation to experiments.—Chemotaxis of sperm cells

has been extensively studied for sea urchin sperm cells
[16]. Tracking experiments in three dimensions show
that these sperm cells swim along noisy helical paths
with typical values for swimming speed, average
curvature, and torsion v0 � 100–200 �ms�1, �0 �
0:025–0:05 �m�1, �0 � �0:025 �m�1 [4,7]. For com-
parison, the length of the sperm tail is L � 50 �m [15].
Using a two-dimensional experimental setup in which
sperm cells swim along a circular path, it has been shown
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that a periodic chemotactic stimulus causes a phase-locked
periodic swimming response [15,26]. Such a behavioral
response is consistent with our model of a chemotactic
chiral swimmer [18].

In a pioneering experiment, C. J. Brokaw observed
helical swimming paths of bracken fern sperm cells in a
shallow observation chamber [5,6,27]. In the absence of
chemoattractant, sperm swimming paths were noisy heli-
ces whose center lines could be described as planar persis-
tent random walks with persistence time tP;2d � 5 s and

net speed �v � 200 �ms�1, corresponding to a persistence
length of lP;2d � 1 mm. Accordingly, the planar orienta-

tional fluctuations of the helix vector are characterized by a
rotational diffusion coefficient D ¼ t�1

P;2d ¼ 0:2 s�1. In a

strong concentration gradient of chemoattractant, sperm
swimming paths were bent helices which aligned with
the gradient direction at a rate proportional to the rela-
tive strength of the concentration gradient � �
150 �ms�1jrcj=c [28]. In an initially homogeneous con-
centration field of charged chemoattractant, alignment of
helical sperm swimming paths could also induced by ap-
plying an external electrical field jEj. In this case, it was
found that the alignment rate is proportional to the field
strength �=jEj � 1:6 s�1ðV=cmÞ�1. The mean alignment
hzi ¼ hh3 �Ei=jEj of helical paths at steady state was
measured as a function of field strength jEj. The experi-
mental data could be well fitted by Eq. (9) assuming Pe�
jEj and yielded Pe=jEj � 8 ðV=cmÞ�1 [29]. The above
estimates for D and �=jEj give approximately the same
value for Pe=jEj ¼ ð�=DÞ=jEj [6]. The physical origin of
helix alignment in an electrical field is not entirely known:
The observed alignment might be due to electrohydrody-
namic effects resulting from sperm cells binding chemo-
attractant ions (with sperm cells effectively behaving as
electric dipoles) [6]. An alternative possibility is that the
electric field induces a concentration gradient of chemo-
attractant ions and that the observed alignment of helical
paths is a result of chemotactic navigation in this gradient.

Conclusion.—In this Letter, we studied the stochastic
differential geometry of noisy helical swimming paths
which is relevant for many biological mircoswimmers
with chiral propulsion [4–12]. A simple feedback mecha-
nism enables a chiral swimmer to navigate along a helical
path upwards a concentration gradient of chemoattractant.
Chemotaxis along noisy helices is employed by sperm
cells and possibly other biological microswimmers [5–
9,12]. A similar mechanism underlies phototaxis of several
marine organisms [10,11]. Our theory shows that naviga-
tion along helical paths is remarkably robust in the pres-
ence of fluctuations: An effective rotation of the helix
vector is determined by integrating its orientational fluctu-
ations over several helical turns. Consequently, a small bias
in these orientational fluctuations due to chemotactic sig-
naling results in robust steering and the helix vector tends
to align with the concentration gradient rc. If chemotactic
signaling is adaptive, the alignment rate � is proportional

to the relative strength of the concentration gradient
jrcj=c. After a transient period of alignment of duration
��1, a chemotactic chiral swimmer moves upwards the
concentration gradient with an average speed that is only
limited by the geometry of helical swimming provided the
strength of the gradient exceeds a characteristic value. We
conclude that temporal sampling of a concentration field
along a helical path provides a universal strategy for che-
motaxis which is highly adapted for a noisy environment.
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