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We show that a Landau-type ‘‘order-parameter’’ equation describes the onset of shear-band formation

in granular plane Couette flow wherein the flow undergoes an ordering transition into alternate layers of

dense and dilute regions of low and high shear rates, respectively, parallel to the flow direction. Even

though the linear theory predicts the stability of the homogeneous shear solution in dilute flows, our

analytical bifurcation theory suggests that there is a subcritical finite-amplitude instability that is likely to

lead to shear-band formation in dilute flows, which is in agreement with previous numerical simulations.
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The understanding of the dynamical behavior of granu-
lar materials, a collection of macroscopic dissipative par-
ticles, remains a major challenge in condensed matter
physics [1]. This is partly due to the unavailability of a
unified theory of granular materials for different flow
regimes. In the rapid flow regime [1], the pattern formation
in various canonical flows (vibrated bed, inclined chute
flow, Poiseuille flow, Couette flow, etc.) has received con-
siderable attention during the last few years [2]. One pro-
totype problem in this category is the granular plane
Couette flow (PCF) which undergoes a series of bifurca-
tions due to stationary and traveling wave instabilities [3].
When a dense granular material is sheared in shear-cell
experiments [4], shearing remains confined to a narrow
localized zone (i.e., a ‘‘shear band’’) near the walls and the
rest of the material remains almost unsheared—this is the
analog of the well-known ‘‘gradient-banding’’ (for which
the shear rate is nonuniform along the gradient direction) in
many complex fluids (e.g., in wormlike micelles, polymer
solutions, colloidal suspensions, soft glasses, etc.; see
[5,6]). Such shear banding [7,8], wherein the flow under-
goes an ordering transition into alternate layers of dense
and dilute particle regions of low and high shear rates,
respectively, aligned along the gradient direction, has also
been realized in the molecular dynamics simulations of
granular PCF for a range of densities from dilute to dense
flows in the rapid flow regime. Possible theoretical descrip-
tion of patterns in rapid granular flows in terms of order-
parameter equations is the focus of this Letter.

In traditional fluid mechanics [9], the Ginzburg-Landau-
type order-parameter theories have been greatly successful
in uncovering a multitude of patterns in fluid flows.
Moving onto the ‘‘dissipative’’ granular fluid, we ask:
can we use order-parameter theories to describe the pattern
formation scenario in granular systems? Can we derive the
relevant order-parameter equations from a first principle
theory? One specific goal of this Letter is to explore
whether we could describe the shear-banding phenomenon
in granular PCF via an order-parameter equation, and
another goal is to ascertain its predictive power via a
qualitative comparison with previous simulations of granu-

lar PCF. Our order-parameter theory encompasses a much
broader perspective of describing shear banding in a vari-
ety of complex (non-Newtonian) fluids since it has been
established [6,10] that the shear banding in many complex
fluids originates from an intrinsic instability of the fluid as
in the present case of sheared granular fluid. A unified
order-parameter theory can be developed, provided appro-
priate constitutive relations (e.g., the Johnson-Segalman
model [6]) for complex fluids are known.
We consider a two-dimensional flow of monodisperse

granular materials (with particle diameter d and mass
density � ¼ �p�, where � is the volume fraction of

particles and �p being their material density) driven by

two oppositely moving parallel walls along the streamwise
x direction. The walls are moving in opposite directions
with a velocity Uw=2 and h is the gap between two walls.
Let us focus on the streamwise-independent [@=@xð�Þ ¼ 0]
equations, with u and v being the velocity components in
the x and y directions, respectively, and T be the granular
temperature. The dimensionless balance equations and the
constitutive relations are written down in the supplemen-
tary information [11]. The inelastic nature of particle col-
lisions [12] is reflected in the collisional dissipation term
[D / ð1� e2Þ ! 0, as e ! 1, where e is the restitution
coefficient]. We have verified that the predictions of our
theory do not depend on the choice of a particular Navier-
Stokes-order model [10] as long as the constitutive rela-
tions account for both kinetic and collisional contribu-
tions [12].
The undisturbed laminar flow, whose nonlinear stability

we wish to examine, is the steady [@=@tð:Þ ¼ 0], fully
developed [@=@xð:Þ ¼ 0] flow with no-slip and zero heat
flux boundary conditions [11]. The resultant base flow,
denoted by the underbar,

uðyÞ ¼ y; �ðyÞ ¼ const; TðyÞ ¼ const; (1)

consists of uniform shear rate (� ¼ du=dy ¼ 1) with con-
stant density and constant granular temperature. Note that
there are three control parameters: the dimensionless
Couette gap H ¼ h=d, the restitution coefficient e, and

the average density
R1=2
�1=2 �ðyÞdy � �.
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Nonlinear analysis.—All field variables (density, veloc-
ity, and granular temperature) and transport coefficients are
decomposed into a base-state component and a perturba-
tion. The nonlinear perturbation equations can be written
as �

I
@

@t
�L

�
X ¼ N2ðX; XÞ þN3ðX; X; XÞ; (2)

where X ¼ ½�0; u0; v0; T�Tr represents the vector of pertur-
bation state variables, the superscript Tr indicates the trans-

pose, Lð @@y ; @2

@y2
;�; u; T; . . .Þ is the linear operator and I is

the identity operator;N2 andN3 are the quadratic and cubic
nonlinear terms [11], respectively.

Linear stability.—Neglecting nonlinearities, we obtain
the well-studied linear stability problem [3]: @X

@t ¼ LX.

Using the normal mode ansatz of the form Xðy; tÞ ¼
X½1;1�ðyÞe!t yields the following differential eigenvalue
problem

LX½1;1� ¼ !IX½1;1�; BX½1;1� ¼ 0; at y ¼ �1=2; (3)

where Lðd=dy; d2=dy2;�; u; T; . . .Þ is the linear ordinary

differential operator [3], B is the boundary operator, rep-
resenting the boundary conditions [3,11], and the complex
frequency ! (¼!r þ i!i) is the eigenvalue. The growth
rate of the disturbance is denoted by the real part of ! and
the imaginary part of ! is its frequency. The flow is stable,
unstable, or neutrally stable if !r is negative, positive, or
zero, respectively.

Using the inner product of two complex functions,

hf; gi ¼ R1=2
�1=2

~fðyÞgðyÞdy, with tilde denoting a complex

conjugate, the corresponding adjoint eigenvalue problem is
LyXy ¼ ~!IXy, with boundary conditions being the same
as in Eq. (3). For the present problem, we have verified that
the adjoint operator Ly is just the transpose of Lðd=dy !
�d=dy; d2=dy2; . . .Þ.

Nonlinear stability and center manifold reduction.—The
spectrum of the linear operator is composed into slow,
critical, or center (i.e., the modes have growth rates close
to zero) and fast or critical (i.e., the modes having large
decay rates) modes. Since the domain of our plane Couette
flow is bounded, y 2 ð�1=2; 1=2Þ, the spectrum is dis-
crete, which has been verified by computing the eigenval-
ues of the linear operator L [3,11].

The center manifold theorem [13] states that the dynam-
ics close to the critical situation is dominated by a finite
number of critical modes, resulting in an effective low-
dimensional dynamical system. Focusing on a single slow
mode, therefore, the disturbance vector field Xðy; tÞ ¼
�ðy; tÞ þ�ðy; tÞ is decomposed as a linear combination
of the linear critical eigenfunction � and an infinite num-
ber of noncritical eigenfunctions �.

In our analysis, the most unstable shear-banding mode

[3] from the linear theory (3), X½1;1�ðyÞ, called the funda-
mental mode (linear eigenfunction), represents the critical
mode:

�ðy; tÞ ¼ AðtÞX½1;1�ðyÞ þ ~AðtÞ ~X½1;1�: (4)

In the weakly nonlinear theory, the spatial variation of the
critical mode is taken to be the same as that of the linear
theory, but its temporal variation is nonexponential (unlike
in linear theory) having a finite complex amplitude AðtÞ
whose dynamical equation is of interest here.
To proceed further, we follow two steps [9,13]:

(i) expand Xðy; tÞ ¼ P
kX

ðkÞ þ ~XðkÞ into a generalized

Fourier series, and (ii) the Fourier coefficients XðkÞ are
expanded into a Taylor series in terms of perturbation
amplitude AðtÞ:

X ¼ X1
k¼0

XðkÞ þ ~XðkÞ ¼ X1
k¼0

AkjAjn�kX½k;n� þ c:c:; (5)

with n � 1 and c:c: denotes a complex conjugate. Here the
summation convention is such that 0 � k � n, and the

superscript convention [11] of X½k;n� is defined such that

X½k;n� ¼ 0 if (kþ n) is odd. The explicit expression for the
critical mode �ðy; tÞ as in Eq. (4) can be easily extracted

from the Taylor expansion of the first mode Xð1Þ [as defined
in Eq. (5); see [11]].
Inserting (5) into Eq. (2) and equating the like-order

terms, we obtain [11]�
d

dt
�!

�
AðtÞX½1;1� ¼ nonlinear terms; (6)

�
I
@

@t
�L

�
�ðy; tÞ ¼ nonlinear terms: (7)

The former (6) is the nonlinear evolution equation for the
critical mode �, and the latter Eqs. (7), representing all
noncritical modes �, are called enslaved equations. Note
that we have used (3) to obtain the second term on the left-
hand side of Eq. (6).
Landau equation.—Taking the inner product of Eq. (6)

with adjoint linear eigenfunction Xy and separating the
like-power terms in amplitude, we arrive at the Landau
equation for the perturbation amplitude AðtÞ:

dA

dt
¼ cð0ÞAþ cð2ÞAjAj2 þ . . . ; (8)

where we have used a normalization condition,

hXy; X½1;1�i ¼ 1. It is straightforward to verify from (8) and

(6) that cð0Þ � ! is the linear eigenvalue. Similarly, the

expression for the first Landau coefficient, cð2Þ, can be
identified as

cð2Þ ¼ hXy;H ðX½1;1�;X½2;2�;X½0;2�Þi¼
Z 1=2

�1=2

~XyHdy; (9)

where H ð�; �; �Þ represents a combination of nonlinear
terms [11].
It is clear from Eq. (9) that, in addition to knowing the

fundamental mode X½1;1� and its adjoint Xy, we need to

determine X½2;2� (the second harmonic, originates at OðA2Þ
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from the interaction of the fundamental mode with itself)

and X½0;2� (the distortion to the mean flow [11], which is

always real, originates atOðA ~AÞ from the interaction of the
fundamental mode with its complex conjugate, and this
provides the first modification to the mean or base flow).
From the enslaved Eqs. (7) at quadratic order OðA2Þ, we
obtain the following equation for the second harmonic:

ð2!I�LÞX½2;2� ¼ N2ðX½1;1�; X½1;1�Þ: (10)

This can be solved for X½2;2� since the right-hand side of
Eq. (10) is a known function of the fundamental mode

X½1;1�. We have verified that the second harmonic and the

distortion to the mean flow are equal, X½0;2� ¼ X½2;2�, for the
shear-banding instability.

Neglecting nonlinear terms in (8), we obtain the well-
known linear stability result, AðtÞ � expð!tÞ, of exponen-
tial growth which is valid at linear order, OðAÞ, in ampli-

tude. In the following discussion, we decompose cðnÞ into
real and imaginary parts: cðnÞ ¼ aðnÞ þ ibðnÞ, with n ¼
0; 2; 4; � � � ; for example, að0Þ and bð0Þ represent the growth
rate and the frequency of the disturbance, respectively. For
the present problem of shear-banding instability, it has

been verified [3] that bð0Þ ¼ 0; i.e., the unstable eigenvalue
is always real which implies that the related bifurcation
(see below), if any, must be of pitchfork-type. We have also

verified that bð2Þ ¼ 0; i.e., the first Landau coefficient is
always real for this unstable mode.

The equilibrium amplitude ( dAdt ¼ 0) of disturbance can

be obtained by truncating (8) at the cubic order:

Ae ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�að0Þ=að2Þ

q
; (11)

with the third solution Ae � 0 representing the base-state
of uniform shear and constant density and granular tem-
perature. It is clear that the finite-amplitude equilibrium so-

lutions (11) exist iff að0Þ and að2Þ are of opposite sign. The
sign of the real part of cð2Þ decides the nature of bifurcation:
a positive value for að2Þ denotes a subcritical bifurcation
and its negative value denotes a supercritical bifurcation.

Phase diagram and bifurcation.— The differential ei-
genvalue problem (3) and the differential equation (10)
have been discretized using the Chebyshev spectral method
[3]; see [11] for details on numerical method.

The phase diagram, separating the zones of stability and

instability by the neutral contour (að0Þ ¼ 0, red line), in the
(�, H) plane is shown in Fig. 1(a) for a restitution coeffi-

cient of e ¼ 0:95; the flow is unstable (að0Þ > 0) inside the

red neutral line, and stable (að0Þ < 0) outside. With de-
creasing value of e, the neutral contour shifts towards the
left (i.e., at lower H) and the growth rate increases [3], and
hence the size of the unstable region in the (�, H) plane
increases (and the flow becomes more unstable) with in-
creasing dissipation. It may be noted that the linear stabil-
ity equations (3) admit analytical solution [3]:

ð�½1;1�; T½1;1�ÞðyÞ ¼ ð�1; T1Þ coskmðy� 1=2Þ; (12)

where km ¼ m� is the ‘‘discrete’’ wave number along y,
with m ¼ 1; 2; . . . being the mode number that tells us the
number of zero-crossing of the density or temperature
eigenfunctions along y 2 ð�1=2; 1=2Þ. The neutral con-
tour in Fig. 1(a) corresponds to mode m ¼ 2 for which a
typical density eigenfunction is displayed in the inset in
Fig. 1(a). This suggests that inside the red neutral contour
the unstable shear flow will give birth to new solutions
having modulated density profiles along the gradient (y)
direction. Interestingly, the uniform shear flow [Eq. (1)] is

linearly stable for �<�l
c ¼ min8H�ðað0Þ ¼ 0Þ 	 0:154

[below the lower branch of the red neutral contour in
Fig. 1(a)]. In contrast to this prediction of the linear theory,
however, we note that such density-segregated solutions
have been found in the molecular dynamic simulations of
granular shear flow; see the snapshot of particle positions
in Fig. 1(b).
Let us now turn to analyze the results of our nonlinear

theory. Figure 1(c) shows the variations of the first Landau
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FIG. 1 (color online). (a) Phase diagram in the (H, �) plane,
showing the neutral stability contour (red line) and the contours
of vanishing first Landau coefficient (blue lines) for a restitution
coefficient of 0.95. The inset shows a typical density eigenfunc-
tion within the ‘‘linearly’’ unstable region. (b) Shear-band for-
mation in simulations of dilute granular PCF: � ¼ 0:05, e ¼ 0:6
and N ¼ 20 000. (adapted from M.-L. Tan’s thesis 1995). Lees-
Edwards boundary condition has been used with the top bound-
ary moving to the right and the bottom boundary to the left with
the same speed. (c) Variations of að0Þ and að2Þ with density at
H ¼ 200 for e ¼ 0:95. The critical density is defined as the one
at which the linear growth rate is zero, �c ¼ �ðað0Þ ¼ 0Þ 	
0:157 at H ¼ 200.
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coefficient [að2Þ] and the linear growth rate [að0Þ] with mean

density for H ¼ 200 and e ¼ 0:95. Since að2Þ > 0 and

að0Þ < 0 for �<�c � �ðað0Þ ¼ 0Þ, the existence of
finite-amplitude subcritical solutions is strongly suggested
[viz. Eq. (11)] in the dilute limit.

The zero contour of the first Landau coefficient is super-

imposed in Fig. 1(a) as blue lines, and að2Þ > 0 inside the
blue loops. As per Eq. (11), it is now clear that the finite-
amplitude subcritical solutions are possible in the dilute
limit, enclosed by the lower blue loop in Fig. 1(a). As in the

case of the neutral contour [að0Þ ¼ 0, the red contour in

Fig. 1(a)], the blue contours for að2Þ ¼ 0 shift towards the
left with decreasing value of e (say, 0.6), and hence the size
of the subcritical region (at dilute limit) in the (�,H)-plane
increases with increasing dissipation. This evidence of
subcritical instability for dilute flows is in agreement
with the simulations of Ref. [7].

With parameter values as in Fig. 1(c), the bifurcation
diagrams in the (Ae, ���c)-plane are shown in Fig. 2(a)
for two values of the restitution coefficient: e ¼ 0:95 (red
dash line) and 0.6 (blue dot-dash line). Each line in
Fig. 2(a) provides the threshold-amplitude, Aeð�; eÞ, for
nonlinear subcritical instability. This implies that if the
perturbation amplitude A is larger than its threshold value
[i.e., if A > Aeð�; eÞ], then the uniform shear flow will
jump into a new state of nonuniform shear and nonuniform
density across the gradient direction. Typical subcritical
finite-amplitude solutions for the density (solid line), � ¼
�þ Ae�

½1;1�, and the shear rate (dashed line), � ¼
d=dyðuþ Aeu

½1;1�Þ, are displayed in Fig. 2(b), clearly
showing density segregation and shear localization across
the y direction; these shear-banded solutions have been
calculated at the threshold amplitude A ¼ Ae, with a mean
density � ¼ 0:15, H ¼ 200 and e ¼ 0:6.

Figure 2(a) also suggests that the threshold amplitude for
nonlinear instability decreases with increasing dissipation,
implying that more dissipative particles are more prone to
such subcritical shear-banding instability. The important
point to note is that an appropriate magnitude of finite-

amplitude perturbation, A > Aeð�; eÞ, must be imposed in
simulations to achieve the shear-banded flow in the dilute
limit.
At larger densities, the nature of bifurcation changes

from subcritical to supercritical; see the inset of Fig. 2(a)
for H ¼ 100 and e ¼ 0:95. The corresponding solutions
for �ðyÞ and �ðyÞ look similar to those in Fig. 2(b). Inside
the upper loop of the blue contour in Fig. 1(a), we have

að0Þ > 0 and að2Þ > 0, and hence finite-amplitude solutions
do not exist [Eq. (11)] for some range of � (inside upper
blue loop) in the dense limit.
Conclusion.—Starting from the Navier-Stokes level con-

tinuum equations of inelastic dense-gas kinetic theory and
using the center manifold reduction technique, we showed
that a Landau-type order-parameter equation describes the
shear-banding transition in granular PCF. Our results on
the first Landau coefficient suggest that there is a subcrit-
ical finite-amplitude instability for dilute flows even
though the dilute flow is stable according to the linear
stability theory. The calculation of higher-order Landau
coefficients (required to obtain the associated stable finite-
amplitude solutions in the dilute limit) is left to a future
work. Even though we focused on streamwise-independent
flows in this Letter, our nonlinear order-parameter theory
can be extended to analyze various nonlinear patterns in a
host of granular flow problems as well as to describe shear
banding in other complex fluids [5,6].
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FIG. 2 (color online). (a) Bifurcation diagram in the
amplitude-vs-density plane for e ¼ 0:95 (red) and 0.6 (blue) at
H ¼ 200. Inset shows a bifurcation diagram at H ¼ 100 and
e ¼ 0:95. (b) Finite-amplitude solutions for the density and the
shear rate at � ¼ 0:15, H ¼ 200 and e ¼ 0:6. Note that the

density has been multiplied by a factor of 6.
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