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We show that the origin of the universal optical conductivity in a normal N-layer graphene multilayer is

an emergent chiral symmetry which guarantees that �ð!Þ ¼ N�uni in both low and high-frequency limits.

[�uni ¼ ð�=2Þe2=h]. We use this physics to relate intermediate frequency conductivity trends to quali-

tative characteristics of the multilayer stacking sequence.
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Introduction.—Graphene is an atomically two-
dimensional material which can be viewed either as a
single sheet of graphite or as a large unrolled nanotube.
Experimenters [1–5] have recently made progress in pre-
paring and measuring the electronic properties of single
and multilayer graphene sheets. One particularly intriguing
property of neutral single-layer graphene sheets is its inter-
band optical conductivity which is expected [6–8] to be
approximately constant over a broad range of frequencies
with a value close to

�uni ¼ �

2

e2

h
; (1)

dependent only on fundamental constants of nature.
Experiments [9–12] have demonstrated that corrections
to the constant universal conductivity, which might be
expected to follow from electron-electron interactions
[13–15] or refinements of the Dirac-equation band-
structure model [16] for example, are small. Recently
Gaskell et al. [17] found that for frequencies in the optical
range the conductivity per layer in multilayer graphene
sheets is also surprisingly close to �uni. Separately,
Kuzmenko et al. [18] demonstrated experimentally that
in bulk graphite the optical conductivity per layer has a
smoother frequency dependence and is even more uni-
formly close to �uni than in thin multilayers, and explained
the weak frequency dependence they found in terms of the
crossover to three-dimensions. In this Letter we identify
the emergent chiral symmetry of multilayers [19,20] as a
key element of the physics responsible for the ubiquity of
�uni in multilayer graphene systems.

A single graphene sheet consists of a honeycomb lattice
of carbon atoms. Graphene �-orbitals can be viewed [5] as
possessing a ‘‘which sublattice’’ pseudospin degree of
freedom. The envelope functions of their electron waves
are described by a two-dimensional massless Dirac equa-
tion which possesses pseudospin chiral symmetry and
leads to eigenspinors in which the phase difference be-
tween sublattices � ¼ �J�k where the pseudospin chi-

rality J ¼ 1 and �k ¼ tan�1ðky=kxÞ. The pseudospin

chirality is defined by this equation as rate at which pseu-
dospin orientation varies with momentum orientation.
When sheets are stacked to form a multilayer system

there is an energetic preference for an arrangement in
which each layer is rotated by 60� with respect to one of
the two sublattices of its neighbors. This prescription gen-
erates three distinct planar projections of the honeycomb
lattice (A, B, and C) and therefore 2N�2 distinct N-layer
sequences. We refer to multilayers in this class as normal.
Repeated AB (Bernal) stacking and repeated ABC (ortho-
rhombic) stacking should be viewed as extreme cases, as
we explain in more detail below. The emergent chiral
symmetry we discuss below applies for any normal multi-
layer. AA (hexagonal) stacking (placing a layer directly on
top of another) is energetically costly [21], does not yield
chiral symmetry, and has clear optical signatures. Our
discussion of optical properties for normal multilayer gra-
phene systems starts from a model, referred to below as the
idealmodel, in which only the dominant interlayer nearest-
neighbor hopping processes couple individual-sheet Dirac-
equation waves.
The optical conductivity of an N-layer system is ex-

pected to approach N�uni for frequencies that exceed the
interlayer-coupling scale but are smaller than the
�-bandwidth scale, since the layers then contribute inde-
pendently and the Dirac model still applies. The ideal
model of normal graphene multilayers has a surprising
property which we have explained previously [19,20]. In
the low-energy limit its spectrum separates asymptotically
into ND � N decoupled pseudospin doublets, each of
which has chiral symmetry with a chirality J which can
in general be larger than 1. We demonstrate below that the
conductivity of a pseudospin doublet with chirality J is
J�uni. It then follows from the chirality sum rule [19],

XND

n¼1

Jn ¼ N; (2)
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that the conductivity of the ideal model unexpectedly also
approaches N�uni in the! ! 0 limit. Since the asymptotic
pseudospins which emerge at low-energies are in general
spread across a number of different layers and are qualita-
tively dependent on the way in which the layers are
stacked, the low-frequency limit of the interband conduc-
tivity does not result from independent single-layer con-
tributions but has a completely different origin. We show
below that corrections to the ideal model are small and
therefore use it to analyze correlations between stacking
and deviations from N�uni at intermediate frequencies.

Chiral doublet conductivity.—The Kubo formula for the
real part of the optical conductivity, �Rð!Þ � Re½�xxð!Þ�,
of an M-band two-dimensional electron-gas system is

�Rð!Þ ¼ ��e2

h

X
n�n0

Z d2k

2�

fn;k � fn0;k
�n;k � �n0;k

� jhn; kj@vxjn0; kij2�ð@!þ �n;k � �n0;kÞ; (3)

where �n;k and jn; ki are eigenvalues and eigenvectors of

the M�M Hamiltonian matrix H , fn;k is a Fermi occu-

pation factor and va ¼ @H =@@ka is the velocity operator.
The M ¼ 2 Hamiltonian matrix of a doublet with chirality
J is

H J ¼ �1
0 ð�y

k ÞJ
ð�kÞJ 0

 !
; (4)

where �1 is the nearest-neighbor interlayer hopping, �k �
@vkei�k=�1 and v is the effective in-plane Fermi velocity

(for example, v ¼
ffiffi
3

p
2

a�0

@
for J ¼ 1 monolayer and J ¼ 2

bilayer graphene where �0 is the nearest-neighbor intra-

layer hopping and a ¼ 2:46 �A is the graphene lattice
constant).

This chiral-invariant Hamiltonian has negative (s ¼ �1)
and positive (s ¼ 1) energy eigenstates with eigenenergies
"s;k ¼ stJj�kjJ and eigenvectors

js;ki ¼ 1ffiffiffi
2

p s
eiJ�k

� �
: (5)

It follows that the interband matrix element of the velocity
operator is

hs; kjv̂xj � s; ki ¼ iJvsj�kjJ�1 sin�k: (6)

Inserting these expressions into the Kubo formula, multi-
plying the result by a factor of gsgv ¼ 4 to account for the
spin and valley degeneracy of graphene systems, we obtain

�Rð!Þ ¼ J�

2

e2

h
¼ J�uni: (7)

Since �1 is the only energy scale in the Hamiltonian, it is
clear prior to calculation that �Rð!Þ / ðe2=hÞð@!=�1Þ‘.
The velocity matrix element, joint density of states, and
energy denominator factors combine so that ‘ ¼ 0 for
every value of J and, importantly, so that �Rð!Þ / J.

Ideal-model conductivity.—It follows from the chiral-
doublet conductivity Eq. (7), the emergent chiral symme-
try [19,20] of the ideal model, and the chirality sum rule
Eq. (2), that the ideal-model conductivity for normal
N-layer graphene satisfies lim!!0�Rð!Þ ¼ N�uni. The
numerical calculations necessary to evaluate �Rð!Þ at
intermediate frequencies are also remarkably simple.
Because the band energies of the ideal model are depen-
dent only on the magnitude of wave vector k, the only
�-dependent quantities which appear in the wave vector
integral for the conductivity [Eq. (3)] are the velocity
matrix elements Mð�Þ ¼ hn; kj@vxjn0; ki. In an N-layer
stack the fastest possible angle variation in any matrix
element varies as expð�iN�Þ. It follows that all angle
integrals are evaluated exactly by summing over 2N þ 1
equally spaced orientations. The wave vector magnitude
integrals are performed by solving for jkj values at which
interband energy differences are equal to @!. The ideal-
model conductivity of any multilayer stack can be eval-
uated very accurately with a relatively small numerical
effort.
We have evaluated �Rð!Þ curves for many stacking

arrangements; all results confirm our claim that for the
ideal model �Rð!Þ ! N�uni in low and high-frequency
limits. In Figs. 1–3 we show representative results for some
2, 4, and 10 layer stacks which allow us to discuss correc-
tions to the ideal model and trends in the relationship
between stacking and intermediate frequency deviations
from N�uni.
Discussion.—The optical conductivity of bilayers

(Fig. 1) has been studied both theoretically [22,23] and
experimentally [10,24–26] in previous work. The elec-
tronic structure consists [19] of a J ¼ 2 chiral doublet at
the Fermi energy (the simplest example of emergent chiral
symmetry) and a two-site chain split-off band. The low-
frequency conductivity originates from transitions within
the J ¼ 2 doublet. Because the corresponding transition

FIG. 1 (color online). Conductivity for ideal-model bilayer
graphene (�3 ¼ 0) and for a more realistic model with distant
neighbor interlayer hopping (�3 ¼ 0:3 eV). The inset shows
ideal-model band structure of bilayer graphene.
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matrix elements are finite at k ¼ 0, the strongest infrared
(IR) feature occurs at the onset energy, @! ¼ �1, of tran-
sitions between the chiral doublet and the split-off bands.
(�1 ¼ 0:3 eV [5] in all our calculations.) The feature
associated with transitions from split-off valence to split-
off conduction bands at 2�1 is weaker because in this case
the velocity matrix elements vanish at the k ¼ 0 onset.
Inclusion of remote interlayer hopping �3, or of any other
corrections to the ideal model has little influence on the
optical conductivity.

The same patterns continue in thicker multilayers. The
low-frequency conductivity N�uni comes entirely from
transitions within asymptotically free chiral doublets,
each of which is dispersed across the multilayer. The
high-frequency conductivity, also N�uni, comes from tran-
sitions within decoupled single layers. The crossover at
intermediate frequencies is punctuated by the onset of a
series of interband transitions, with the strongest features
coming from transitions between the low-energy chiral
doublets and split-off bands. The N ¼ 4 case, illustrated
in Fig. 2, has four distinct stacking sequences, two of
which are related by inversion symmetry. The three in-
equivalent cases are orthorhombic ABCA stacking which
yields [19] a J ¼ 4 low-energy chiral doublet and three
two-site-chain split-off bands, Bernal ABAB stacking
which yields [19] two J ¼ 2 chiral doublets and four-
site-chain split-off bands, and intermediate ABCB stacking
which yields [19] J ¼ 3 and J ¼ 1 chiral doublets and
both three and two-site-chain split-off bands. The optical

conductivity of the orthorhombic ABCA stack has a diver-
gent IR feature associated with J ¼ 4 chiral doublet to
two-site chain transitions. The onset of this absorption
band is below �1 because one of the three two-site-chain
split-off bands disperses toward the Dirac point and has an
extremum at finite ka � 0:1, implying a divergent joint
density of states. The Bernal ABAB stack has two jump-
discontinuity IR features associated with k ¼ 0 transitions
between the J ¼ 2 doublets and Er ¼ �2�1 cosðr�=5Þ
four-site-chain [19] split-off bands with r ¼ 1, 2.
Similarly the ABCB stack has strong IR features associated
with transitions between the chiral doublets and both E ¼
��1 two-site chain and E ¼ � ffiffiffi

2
p

�1 three-site chain
bands.
Normal graphene stacks can always be organized into

Bernal and orthorhombic segments. In general stacks with
more orthorhombic segments have fewer [19] low-energy
chiral-doublet bands (which must therefore have higher
chirality because of the chirality sum rule) and shorter
[19] chain split-off bands. Level repulsion among the
short-chain bands tends to cause some to disperse toward
the Dirac point and have finite k extrema. Stacks with more
Bernal segments will have more chiral doublets with lower
chirality and longer-chain split-off bands. In all cases the
strongest IR features are associated with transitions be-
tween chiral doublets and split-off bands.
Since long-chain states are spread over a broader range

of energies, stacks with more Bernal character tend to have
IR features that are weaker and spread over a wider energy
range. This trend is clear in Fig. 3, which compares the
optical conductivities of 10-layer Bernal and orthorhombic
stacks. In the Bernal case [27] transitions from chiral
doublets to 10-site-chain split-off bands lead to jump dis-
continuities in �Rð!Þ at @! ¼ 2�1 cosðr�=11Þ for r ¼ 1,
2, 3, 4, and 5. In the orthorhombic case, the first IR feature
appears at a larger frequency but the deviations from
10�uni are larger.

FIG. 2 (color online). Ideal-model band structure and real part
of the conductivity for all tetralayer graphene stacks, ABCA
(top), ABCB, ABAC (middle), and ABAB (bottom). The insets
show stacking diagrams where shaded ovals link sublattices �
and 	 to the nearest interlayer neighbors.

FIG. 3 (color online). Real part of the ideal-model conductiv-
ity for Bernal (AB), orthorhombic (ABC), and hexagonal (AA)
10 layer graphene stacks.
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Figure 3 also shows conductivity results for a 10 layer
hexagonal stack, in which honeycomb layers are placed
one on top of the other. Stacks of this type do not satisfy the
chirality sum rule [20] and invariably lead to �Rð!Þ curves
which are suppressed at low frequencies. As illustrated in
Fig. 3, even N hexagonal stacks do not have a low-energy
chiral doublet, thus �Rð!Þ vanishes at small ! and then
increases toward N�uni in steps of 2�uni. For odd N the
stack has a single J ¼ 1 chiral doublet at low energies so
that �Rð!Þ starts at �uni in the low-frequency limit and
then increases in 2�uni steps towardN�uni. More generally,
stacks with AA segments always have �Rð!Þ in the low-
frequency limit smaller than N�uni and approach this limit
only at high frequencies.

The full electronic structure of graphene multilayers is
usually discussed in terms of an appropriate adaptation of
the Slonczewski-Weiss-McClure (SWM) [5,28] parame-
terization of graphite’s bands. A SWM-type model im-
proves the ideal model by accounting for small
differences between the energies of �-orbitals on inequi-
valent carbon atoms and for various distant neighbor hop-
ping amplitudes. In the bilayer case the only important
additional parameter is the distant neighbor interlayer hop-
ping amplitude �3, and as noted earlier this process has
negligible influence on �Rð!Þ. These refinements of the
electronic structure model lead in general to two-
dimensional (2D) electron and hole Fermi surfaces with
Fermi energies that are much smaller than the dominant
interlayer-coupling energy �1. The appearance of 2D
Fermi surfaces therefore has little influence on the IR
conductivity. The presence of 2D Fermi surfaces (and in
the limit of graphite of 3D Fermi surfaces) does imply that
�Rð!Þ will in general have a small amplitude Drude peak,
not accounted for in the present discussion. The Drude
peak will take a small amount of spectral weight [29]
from the IR interband transitions. More realistic models
also do in general break particle-hole symmetry. This
refinement will cause an IR feature associated with a
particular split-off valence band to chiral doublet transition
to appear at a slightly different frequency than the corre-
sponding transition in the ideal model. These caveats not-
withstanding, the origin of the generic �Rð!Þ � N�uni

behavior in graphene multilayers is explained most suc-
cinctly by the ideal model, and, in particular, by its emer-
gent chiral symmetry.

The ideal model is also able to capture the stacking
structure implications of measured IR conductivity fea-
tures: the high-frequency decoupled layer N�uni limit is
approached for @! * 2�1 � 0:6 eV for normal stacks, but
only at higher frequencies �4�1 � 1:2 eV when AA
stacking faults are present. AA stacking is also indicated
by suppressed conductivity at lower frequencies, as dis-
cussed previously by Kuzmenko et al. for the bulk graphite
case [18]. In normal stacks, more pronounced IR features
are an indicator for orthorhombically stacked subunits. We
conclude that the optical conductivity or corresponding
transmittance Tð!Þ ¼ ½1þ 2�

c �Rð!Þ��2 [18] spectrum

can provide a convenient qualitative characterization of
multilayer graphene stacks.
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