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We study nuclear relaxation in the presence of localized electrons in a two-dimensional electron gas in a

disordered delta-doped semiconductor heterostructure and show that this method can reliably probe their

magnetic interactions and possible long-range order. In contrast, we argue that transport measurements,

the commonly employed tool, may not sometimes distinguish between spatial disorder and long-range

order. We illustrate the utility of using the nuclear relaxation method to detect long-range order by

analyzing a recent proposal made on the basis of transport measurements, on the spontaneous formation of

a two-dimensional Kondo lattice in a 2D electron gas in a heterostructure.
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Introduction.—The possibility of long-range charge or
magnetic order of strongly correlated electrons in meso-
scopic devices, such as Wigner crystals [1,2], charge den-
sity waves [3], and Kondo lattices [4], has attracted a great
deal of attention in recent times. Theoretical interest in
these systems stems from the low-dimensionality which
enhances quantum effects, while the practical motivation
comes from the tunability of the material parameters by
electrical means, which is not achievable in bulk materials.
Experimental probes for long-range order in mesoscopic
devices have been usually based on transport measure-
ments [4] as their small size makes it difficult to employ
standard bulk methods such as diffraction and nuclear
magnetic resonance (NMR) [5–7]. However, suitably
adapted NMR methods are now beginning to emerge as
very promising tools for studying electron interactions in
mesoscopic systems—recent work shows that nuclear po-
larization may be generated [8–12] locally in such devices
and its relaxation can be feasibly detected [13,14] through
two-terminal conductance measurements, and the behavior
of the nuclear relaxation rate conveys useful information
about the electronic state in the device. For example, in the
context of the decade-old puzzle of the 0.7 conductance
anomaly in quantum point-contact devices [15], NMR can
be used to distinguish between three incompatible contest-
ing theories—a Kondo effect, a spin-incoherent Luttinger
liquid state, or a polarized electron liquid [13] even though
transport properties are similar in the three scenarios.

In this Letter, we study nuclear relaxation as a probe for
long-range magnetic (and crystalline) order of localized
spins in a disordered, metallic two-dimensional electron
gas (2DEG) in a delta-doped heterostructure. We find that
the temperature dependence of the relaxation rate for a
disordered few-impurity system approximately follows a
linear-T law, while for strong enough interspin interac-
tions, nuclear relaxation in a regular array, or a Kondo

lattice, will show an exponential increase, eA=T , with de-
creasing temperature. In contrast, we argue that transport
measurements will show no significant difference between
the two situations. As an application of our analysis, we

discuss a recent experimental claim [4] based on transport
measurements in disordered GaAs=AlGaAs delta-doped
heterostructures, on the spontaneous formation of a
Kondo lattice in the 2D electron gas in the heterostructure.
Experimental context.—Kondo lattice materials, such as

heavy fermion metals, are being intensely studied [16,17]
to understand the nature of the competition of the magnetic
ordering tendency of the localized electrons and the
screening tendency (Kondo effect) of the conduction elec-
trons, close to quantum criticality. A 2D Kondo lattice, if
engineered in a heterotructure, would offer the twin ad-
vantages of reduced dimensionality and tunability of pa-
rameters [4], and, as we show below, nuclear relaxation can
be used to study these systems.
In Ref. [4], it was observed that the 2DEG conductance

showed an alternating splitting and merging of a zero bias
anomaly (ZBA) upon varying the gate voltage Vg. The

authors interpreted these observations as evidence for the
formation of a spin-1=2 Kondo lattice embedded in a
2DEG with the following physical picture. Varying the
gate voltage affects the 2DEG density, which, in turn,
controls the sign of the RKKY exchange interaction,
JRKKYðRijÞ � ðJ2�=R2

ijÞ cosð2kFRijÞ, of the localized

spins. Here, J is the Kondo coupling of the localized spins
with the conduction electrons, and � is the density of states
at the Fermi energy.
Nevertheless, the observation of the ZBA splitting is not

sufficient to prove the existence of a Kondo lattice. Such an
effect has been observed in the context of double quantum
dot (DQD) systems [18,19], and attributed to the competi-
tion of Kondo and interdot exchange interactions. Even in a
sample with a small number of localized spins, the Kondo
and RKKY competition will be dominated by the pairs of
spins with the strongest exchange interactions. To this end,
we need to show that the nuclear relaxation rates have
qualitatively different signatures for the Kondo lattice
and few Kondo impurities scenarios.
Nuclear relaxation takes place through nuclear coupling

to localized spins S as well as conduction electrons
�:H loc ¼ AdI � Sþ AsI � �. The relaxation contribution
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from localized (electron) spins is usually much larger in
devices similar to those considered here [20]. Taking only
the localized spin part, the nuclear relaxation rate can be
expressed in terms of the transverse impurity susceptibility,

T�1
1 ¼ A2

d
kBT

@
2ðgs�BÞ2 Imð�þ�

i ð!Þ
2! Þ!!0. We show below that the

temperature dependencies of 1=T1 in the Kondo lattice
and few quantum dot scenarios are qualitatively different.
The results obtained in the Letter are illustrated in Fig. 1
and Table I.

Model.—We consider the following model Hamiltonian
for S ¼ 1=2 magnetic impurities Si in a 2-dimensional
electron gas:

H ¼ X
k

�kc
y
k�ck� þ J

X
i

�i � Si: (1)

Here, �i the conduction electron spin density at ri.
We use the ‘‘drone-fermion’’ representation for the lo-

calized spins [21,22]: Sþi ¼ fyi �i=
ffiffiffi
2

p
, S�i ¼ �ifi=

ffiffiffi
2

p
, and

Szi ¼ fyi fi � 1=2, where fi and fyi are ferminonic opera-
tors and �i are real Majorana fermions defined by
f�i; �jg ¼ �ij. Note that the commutation relations for

the impurity spins are automatically satisfied, obviating

the need to impose local constraints on the fermion num-

ber. Introducing the bosonic operators, ai ¼ ðfyi ci" þ
�ici#=

ffiffiffi
2

p Þ= ffiffiffi
2

p
, bi ¼ ðfyi cyi# � �ic

y
i"=

ffiffiffi
2

p Þ= ffiffiffi
2

p
, the interac-

tion part of the Hamiltonian (up to constants and irrelevant

terms) can be written as Hint ¼ �J
P

iðayi ai þ byi biÞ.
Factorizing Hint using the Hubbard-Stratonovich transfor-
mation introducing fields �i

1 and �i
2, and further making

the transformations �i
1;2 ¼ j�i

1;2jei�
i
1;2 , f ! feið�2��1Þ,

c"ðrÞ ! c"ðrÞei�2 , c#ðrÞ ! c#ðrÞei�1 , the partition function

can be written in path integral form:

Z ¼
Z

Dðc; f; �;�Þe
�
R1

T
0
d�½S0þSintþ1

J

P
i

ðj�i
1
j2þj�i

2
j2Þ�

;

S0 ¼
X
k�

cyk�ð@� þ �kÞck� þX
i

�
fyi @�fi þ

1

2
�i@��i

�
;

Sint ¼
X
i

j�i
1jðai þ ayi Þ þ j�i

2jðbi þ byi Þ þ _� terms: (2)

We make a mean-field analysis, neglecting the fluctuations
in �’s and �’s. The frequency-dependent local transverse
susceptibility at low temperatures T � TK can be shown to
be [22]

�þ�
i ð!mÞ
ðgs�BÞ2

¼ hT�S
þ
i ð�ÞS�i ð�0Þi!m

’ 2

	ðj!mj þ!KÞ : (3)

Here, !m are bosonic Matsubara frequencies, and !K ¼
D expð�4=3�JÞ. Note that !K differs from the correct

Kondo temperature, kBTK �De�1=ð�JÞ. This is an artifact
of the mean-field approach. An analytic continuation,
�þ�
i ð!mÞ ! �þ�

i ð!Þ ¼ ðgs�BÞ2=	ð�i@!þ!KiÞ, to
real frequencies leads to the well-known result T�1

1i ¼
A2
dkBT=	@!

2
Ki for T � !K.

Nuclei may also relax through their hyperfine coupling
with conduction electrons. It is easy to see that at low
temperatures, the ratio of the nuclear relaxation rates
from impurity coupling and conduction electron coupling
is ð!2

K�
2R4

en	Þ�1, where Ren is the electron-nucleus sepa-
ration. Thus, the impurity coupling mechanism dominates

as long as Ren < 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!K�	

1=2
q

� 160 nm.

Double or a few-impurity system.—We now consider the
impurity spin susceptibility for two spins S1, S2 at R ¼
R1, R2 which have an exchange interaction Hex ¼
JexðR12ÞS1 � S2 among them. If the wave functions of the
localized electrons have a significant overlap, then direct
exchange would be dominant. Indirect (or RKKY) ex-
change is more important at larger separations. Here, it
also becomes important to compare the relative strengths
of the RKKY interaction between the impurity spins with

(a)

(b) (c)

(d)

(i)

(ii)

FIG. 1 (color online). Plots showing the qualitative differences
in the temperature and (AFM) interdot exchange interaction Jex
dependencies of the nuclear relaxation rates T�1

1 for a double

quantum dot system and Kondo lattice. Main plot: T�1
1 ðTÞ for

(a) a double dot system; (b) a Kondo interaction dominated
lattice (Jex=!K < 1); (c),(d) a Kondo lattice where Jex=!K > 1
and T < ð>ÞTmf

C , where Tmf
C is the mean-field transition tem-

perature. Dotted curve interpolates between these two tempera-
ture regimes (there is no phase transition). Inset: T�1

1 as a

function of Jex=!K for (i) the double dot system—note that
T�1
1 vanishes for Jex=!K > 	; and (ii) for the Kondo lattice.

TABLE I. Distinguishing different physical scenarios with NMR for Jex � !K.

FM AFM

Double impurity Linear-T at low temp. and 1=T at high temp. Zero at low temp. and 1=T at high temp.

Lattice T=ðT � TcÞ3=2 at high temp. and expð1=TÞ at low temp. T=ðT � TcÞ at high temp. and expð1=TÞ at low temp.
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the hyperfine interaction of either of the impurities with
neighboring nuclei. The RKKY interaction JRKKY falls off
with distance R12 not faster than JRKKY � J2�=R2

12. This
should be compared with Ad ¼ As=llocR

2
dot, where Rdot is

the size of the quantum dot in the plane of the heterostruc-
ture and lloc is the thickness of the 2DEG. We use the
following parameters for a GaAs=AlGaAs heterostruc-
ture, J�� 1, lloc � 1 nm, Rdot � 10 nm, As ¼
3:8� 10�54 Jm3, and m ¼ 0:063me. Then JRKKY �
Ad=Nnuc is satisfied if R12 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=Ad�

p � 1 mm, and this
is true for most devices. Thus, the nuclei couple to the
RKKY bound pair S1 þ S2 rather than the spins separately.
The impurity susceptibility now involves both on-site and
intersite correlations, and we have, to leading order in
interimpurity interaction for T � TK,

T�1
1 ¼ A2

dkBT

	@!2
K1

�
1þ!2

K1

!2
K2

� Jex
	!K2

�
1þ!K1

!K2

��
: (4)

When Jex=!K 	 	, the nuclear relaxation rate is sup-
pressed to zero: this is the maximum value of Jex=!K for
which the behavior is governed by the Kondo screening of
the impurity spins. Indeed, even for a large ferromagnetic
coupling of the spins, the ground state is a Kondo singlet
[23]. At antiferromagnetic couplings Jex >	!K, the
ground state is an RKKY singlet which is unable to ex-
change spins with the nuclei. While our analysis is only to
leading order in Jex, more accurate calculations [23] based
on numerical renormalization group methods have shown
that this critical point occurs at Jex=kBTK � 2:2.

We discuss now the validity of the mean-field treatment.
Note that the mean-field � corresponds to binding energy
of the impurity fermion with the local conduction electron.
Ignoring fluctuations of the phase of � results in under-
estimation of !K (see text following Eq. (3) and also
Ref. [22]). Amplitude fluctuations of � may be ignored
as long as the Kondo energy dominates interimpurity ex-
change, i.e., for small Jex=!K. In fact, the mean-field
approach is incapable of capturing the physics of the
magnetically ordered phase.

With a larger number of spatially disordered impurity
spins, one can show that for weak interimpurity interac-
tions, the nuclear relaxation rates have linear-T behavior
with logarithmic factors arising from the random distribu-
tion of Kondo temperatures of individual impurities [24].
For strong interimpurity exchange interactions, we can
ignore the Kondo effect to leading order. In that case, it
is known that the magnetic susceptibility at low tempera-
tures is dominated by pairs with the weakest exchange
interactions [25]—this leads to a weakly increasing sus-

ceptibility eCln
1=2ðT0=TÞ (instead of zero for the double im-

purity case). Nevertheless, the nuclear relaxation rate is
dominated by the linear-T prefactor as the exponential
term is weaker than any power law.

Kondo lattice.—The main physical difference from the
two-impurity case is the existence of low energy magnetic
excitations in the lattice for any value of the ratio Jex=!K.

As a result, significant nuclear relaxation still occurs for
large antiferromagnetic interimpurity couplings unlike the
two-impurity case where it vanishes.
We consider first the scenario where we have a lattice of

Kondo impurities with a weak exchange interaction (Jex �
!K) among the neighboring spins. Suppose that JexðqÞ has
maximum value at q ¼ Q, and assume the wave vector
dependence in the vicinity of the maximum is JexðQþ
qÞ ¼ JexðQÞ � ðDs=nimpÞa2q2, where a is the lattice con-

stant of the Kondo array and Ds the spin wave stiffness.
The random phase approximation (RPA) susceptibility in
this momentum region has the form

�þ�
Qþqð!; TÞ ¼ ðgs�BÞ2

	ð!sfðTÞ � i@!þ Dsa
2q2

	 Þ
; (5)

where !sfðTÞ ¼ ðgs�BÞ2
	�þ�

i ð0;TÞ �
JexðQÞnimp

	 . A new energy scale

!sfð0Þ ¼ !K � JexðQÞnimp=	 appears representing the

competition of Kondo and interimpurity exchange interac-
tions. As JexðQÞnimp ! 	!K, the uniform, static trans-

verse susceptibility tends to diverge signaling a magnetic
phase transition. Using the known temperature dependence
of the susceptibility of a Kondo impurity, �þ�

i ð0; TÞ ’
�ið0Þð1� Ck2BT

2=!2
KÞ, (C is a constant of order 1), to-

gether with the frequency dependence of Im� from Eq. (5),
the nuclear relaxation rate for kBT � !K turns out to be

T�1
1 ¼ A2

dkBT=4	
2
@Ds!sfðTÞ: (6)

There is a crucial difference between the nuclear relaxation
results for the Kondo lattice in Eq. (6) and the two-impurity
case. Consider for simplicity !K1 ¼ !K2 ¼ !K. First,
near the transition JexðQÞnimp=!K ¼ 	, 1=T1 for the

Kondo lattice is large and finite, while it tends to vanish
for the two-impurity case.
Now, we consider the case when localized spin-spin

interaction is dominant and neglect the Kondo interaction
in the zeroth order. We are particularly interested in the
regime close to a magnetic phase transition. The
Hamiltonian describing the system would be H ¼P

k;��kc
y
k�ck� þP

qJexðqÞSq � S�q þ J
P

i�i � Si, where

J is to be treated now as a perturbation. JexðqÞ represents
all exchange processes except indirect exchange (RKKY),
JRKKYðq; !Þ ¼ J2

P
k

nk�q=2�nkþq=2

!þ
k�q=2�
kþq=2þi� . Thus, we may

write the effective interimpurity exchange interaction as
Jexðq;!Þ ¼ JexðqÞ þ JRKKYðq;!Þ. We now Taylor expand
the exchange interaction near its extremum, JexðQþ qÞ ¼
JexðQÞð1� �2q2Þ, where JexðQÞ�2 ¼ ðDs=nimpÞa2. The

spin susceptibility near the ordering point is approximately

�þ�
Qþqð!Þ ¼ ðgs�BÞ2

4kBT
mf
C f�2=�2 þ �2q2 � i�Qþqð!Þg ; (7)

where Q is the wave vector of ordering, Tmf
C is the mean-

field magnetic transition temperature, �ðTÞ is the magnetic
correlation length, and �qð!Þ is the imaginary part of

Jexðq; !Þ=JexðQÞ, �qð!Þ’	ðJ�Þ2@!=4JexðQÞkFq¼
�ðqÞ!. We can now estimate the nuclear relaxation rate.
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For an antiferromagnetic (AFM) square lattice, the order-
ing happens at Q ¼ ð	=a;	=aÞ. Then the relaxation rate
at the site of any given impurity is

T�1
1 ðTÞ ¼ A2

dðJ�Þ2JexðQÞn2imp

64@D2
skFQ

T

Tmf
C

�ðTÞ2
a2

: (8)

Equation (8) differs from estimates [26] of 1=T1 for
Heisenberg antiferromagnets because, in our case, the
magnon decay is on account of the RKKY coupling of
the impurity spins. Similarly for the ferromagnetic (FM)
case,

T�1
1 ðTÞ � A2

d	ðJ�Þ2JexðQÞnimp

128@kFaD
2
s

T

Tmf
C

�ðTÞ3
a3

: (9)

The temperature dependencies of the correlation lengths
are similar for the AFM and FM cases,

�ðTÞ ’
(
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tmf
C =ðT � Tmf

C Þ
q

; T > Tmf
C ;

a expð2	D0
s=kBTÞ; T < Tmf

C ;
(10)

where the low temperature behavior for the antiferromag-
net was obtained in Refs. [26,27], and for the ferromagnet
from Refs. [27,28]. D0

s � 0:18JexðQÞnimp is the exact spin

wave stiffness at T ¼ 0 for a 2D (square lattice)
Heisenberg magnet. These results also differ from the
usually encountered 3D Kondo lattice systems [29] be-
cause of the qualitative difference in the behavior of �ðTÞ
at low temperatures.

Finally, let us discuss the effect of the Kondo inter-
action on our results. In presence of interimpurity ex-
change interactions, the singular Kondo corrections
[�ðJ�Þ lnðD=kBTÞ] to the gyromagnetic ratio of the impu-

rity spins are modified to ðJ�Þ lnðD=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2ex þ k2BT

2
q

Þ [30].

Consequently, the primary effect of Kondo corrections is to
decrease the Stoner critical temperature Tmf

C as well as the

prefactor in the expressions for the nuclear relaxation rates
but the temperature dependence of T�1

1 does not change
significantly. Equations (4), (6), (8), and (9) are our main
results and are plotted in Fig. 1.

There is also a possibility of a magnetic instability below
the Kondo temperature. In this case, the ZBA splitting
would be smaller than the ‘‘heavy fermion’’ bandwidth,
!K, unlike the above case where the ZBA splitting is
larger. As an example, for a Fermi liquid with FM spin
fluctuations, results for nuclear relaxation available in the
literature [31] and are similar to our JRKKY=!K > 1 results.
The difference will be seen in the magnitude of ZBA
splitting relative to !K.

In summary, we calculated the nuclear relaxation rates
T�1
1 for the Kondo lattice and the few disordered magnetic

impurities cases and showed that they have qualitatively
different low temperature behaviors: when interspin ex-
change interactions are strong compared to the Kondo
energy !K, the temperature dependence of T�1

1 for the
few-impurity system will follow an approximate linear-T

law, while for the Kondo lattice T�1
1 will show an expo-

nential behavior eA=T at low temperatures. In contrast, we
argued that transport measurements [4] in this case may not
provide a clinching evidence for the formation of crystal-
line order (Kondo lattice). The exponential temperature
dependence is special to two dimensions and indicates
stronger spin fluctuations: a power-law behavior is ex-
pected in three dimensions on either side of the transition
temperature [29]. These results also differ from a 2D
Heisenberg magnet because in our case, magnon decay is
mediated by conduction electrons. We hope our study will
work towards encouraging the use of NMR measurements
as an additional handle for studying magnetism and long-
range order in low-dimensional conductors.
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