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We develop a simple theoretical framework for transport in magnetic multilayers, based on the

Landauer-Buttiker scattering formalism and random matrix theory. A simple transformation allows one

to go from the scattering point of view to theories expressed in terms of local currents and the

electromagnetic potential. In particular, our theory can be mapped onto the well-established classical

Valet-Fert theory for collinear systems. For noncollinear systems, in the absence of spin-flip scattering,

our theory can be mapped onto the generalized circuit theory. We apply our theory to the angular

dependence of spin accumulation and spin torque in noncollinear spin valves.
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The discovery of Giant Magnetoresistance (GMR) [1]
and its subsequent counterpart, the current induced spin
torque [2], was at the origin of a new field which aims at
controlling the magnetization dynamics of small metallic
devices through standard electronics. The theory of trans-
port in those systems is now well developed and includes a
number of approaches that range from classical Valet-Fert
(VF) theory in the diffusive regime [3], the Boltzmann
equation [4] to quantum approaches (original [5] and gen-
eralized [6]), circuit theory, random matrix theory (RMT)
for the scattering matrix [7], and ab initio based models
[8,9]. Many connections exist between these different ap-
proaches. One popular route [10] starts from the Keldysh
Green’s function formalism. In the quasiclassical approxi-
mation it yields the Boltzmann equation and the (VF)
diffusive equation. A different strategy where local equi-
librium is assumed only in certain points leads to circuit
theory. An alternative route is the Landauer-Büttiker for-
malism which expresses the problem of transport inside a
quantum conductor as a scattering problem. This approach
is well suited for a coherent system and is equivalent to the
Keldysh approach. However, the classical concepts of
chemical potential or local equilibrium do not arise natu-
rally in the scattering approach so that classical intuitions
do not easily transfer into its language.

In this Letter, we take the scattering formalism as our
starting point and develop a theory which fully captures VF
and (generalized) circuit theory. Our theory (here after
referred as C-RMT for Continuous Random Matrix
Theory) can be tabulated by the same set of (experimen-
tally accessible) parameters as VF [11]. On the other hand,
it properly includes Sharvin resistance and allows for non-
collinear and even a one-dimensional texture of magneti-
zation (i.e., domain walls). We apply C-RMT to the dis-
cussion of the angular dependence of spin torque (‘‘wavi-
ness’’ [12,13]) in asymmetric spin valves, see Fig. 1.

Two quantum conductors in series.—Before introducing
C-RMT, we start with the pedagogical example of trans-
port in a nonmagnetic metal [14,15]. C-RMT is a mere
extension of the concepts developed below to properly take
into account the electronic spins. In a coherent quantum
system, the transport properties can be characterized by the
scattering matrix SA,

SA ¼ r0A tA
t0A rA

� �
; (1)

where rA and tA (t0A and r0A) describe the reflection or
transmission amplitudes to the right (left) of the sample.
When putting two conductors A and B in a series, one has
to add the amplitudes of the direct transmission process
tBtA, of the process with one reflection on each conductor
tBðrAr0BÞtA, and so on. This leads to a geometrical series
which can be resumed into

tAB ¼ tB½1� rAr
0
B��1tA (2)

rAB ¼ rB þ tB½1� rAr
0
B��1rAt

0
B: (3)

FIG. 1 (color online). (a) Schematic of a spin valve with two
ferromagnetic layers FA and FB whose magnetization makes an
angle �. (b) and (c): geometric construction of the spin torque,
see text. ~JA, ~JN , and ~JB are the spin currents along the valve
while ~�A and ~�B are the torque on the two magnetic layers.
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The conductance of such a system is given by the Landauer
formula gAB ¼ ðe2=hÞTAB where TAB ¼ jtABj2 is the
probability for an electron to be transmitted. In the semi-
classical limit for a large number Nch of propagating
channels, one gets,

TAB ¼ TBð1� RAR
0
BÞ�1TA (4)

which has a simple interpretation [similar to Eq. (2)] in
term of adding the probabilities of the various transmis-
sion/reflection processes [15] (Here, RA ¼ jrAj2 ¼ 1� TA

is the reflection probability). Equation (4) can be recast
into RAB ¼ RA þRB �Rsh where we have introduced
the Sharvin resistanceRsh ¼ h=ðe2NchÞ. This addition law
for resistances is very close to Ohm law except for the
presence of the Sharvin (or contact) resistance. An impor-
tant point here is that ‘‘Ohm law’’ is derived for fully
coherent conductors. There is no need for a well-defined
chemical potential (local equilibrium) in between the two
conductors even though everything happens as if such a
chemical potential existed.

RMT.—We now proceed with the extension of the above
ideas to magnetic systems where the Smatrix now includes
a spin grading. Our starting point is an extension of RMT
that was introduced in Ref. [7]. The theory has a structure
almost identical to the scattering approach except that a
conductor (or a part of it) is now described by 4� 4 ‘‘hat’’
matrices r̂, r̂0, t̂, and t̂0 defined in term of the (4Nch � 4Nch)
S matrix,

r̂ ¼ 1

Nch
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with similar definitions for r̂0, t̂, and t̂0. The main result of
Ref. [7] is that the addition law for the ‘‘hat’’ matrices is
exactly given by Eqs. (2) and (3) except that now the
transmission and reflection matrices are to be replaced by
their ‘‘hat’’ counterparts. The conductance is given by g ¼
ðt̂11 þ t̂14 þ t̂41 þ t̂44Þ=Rsh ¼ ð1=RshÞ

P
��0T��0 , where

T��0 ¼ ð1=NchÞTrt��0 ty
��0 is the probability for an electron

with spin �0 to be transmitted with a spin �. The ‘‘hat’’
matrices for the interfaces between two metals can be
obtained from ab initio calculation [16,17], or tabulated
from the experiments (see below).

C-RMT.—To obtain the ‘‘hat’’ matrices for the bulk parts
of the metallic layers, we need to proceed further.

Assuming we know the ‘‘hat’’ matrix ŜðLÞ for a system
of size L, we can add an infinitely small layer of size �L

and compute ŜðLþ �LÞ from the knowledge of Ŝð�LÞ and
the addition law for ‘‘hat’’ matrices. The generic form for

Ŝð�LÞ is given by

t̂ ¼ 1��t�L; r̂ ¼ �r�L (6)

where the two matrices�t and�r entirely characterize the
bulk properties of the material. Expanding the addition law
Eq. (2) in �L provides

@r̂=@L ¼ �r ��tr̂� r̂�t þ r̂�rr̂ (7)

@t̂=@L ¼ ��tt̂þ r̂�rt: (8)

The various elements entering in the ‘‘hat’’ matrices (say t̂)
are vastly inequivalent. The main elements are the proba-
bilities T��0 . Second comes the element on the diagonal,

the so called (complex) mixed transmission Tmx ¼
ð1=NchÞTrt""ty## which measures how a spin transverse to

the magnetic layer can be transmitted through the system.
These elements are usually small [17,18] in magnetic
systems, but can play a role in noncollinear configurations
nevertheless. Last, the other elements involve some coher-
ence between spin-flip and non spin-flip processes and are
likely to be even smaller. In the basis parallel to a layer
magnetization, they can be disregarded. We parametrize a
bulk layer by four parameters �", �# �sf , and �mx,

�t ¼
�" þ �sf 0 0 ��sf

0 �mx 0 0
0 0 ��

mx 0
��sf 0 0 �# þ �sf

0
BBB@

1
CCCA (9)

l� ¼ 1=�� is the mean-free path for spin �. In a ferromag-
net, �mx ¼ 1=l? þ i=lL where l? is the penetration length
of transverse spin current inside the magnet while lL is the
Larmor precession length. Those lengths, which are
roughly equal, are the smallest characteristic lengths with
typical values smaller than 1 nm. In a normal metal, �" ¼
�# ¼ � and �mx ¼ �þ 2�sf so that the ‘‘hat’’ matrices

remain invariant upon arbitrary rotation of the spin quan-
tization axis. �r is given by the same parametrization as
Eq. (9) with �sf being replaced by ��sf (in order to fulfill
current conservation) and neglecting �mx for ferromagnets
(as the mixing conductance is essentially of ballistic ori-
gin). This completes the formulation of the theory.
Equations (7) and (8) can be integrated and a given multi-
layer is then constructed by using the addition law Eqs. (2)
and (3) for the various bulk layers and the corresponding
interfaces.
Link with Valet-Fert theory.—Let us introduce the

4-vector P�ðxÞ ¼ ðP�;"; P�;mx; P
��;mx; P�;#Þ where Pþ;"

(P�;#) is the probability to find a left (right) moving elec-

tron with spin up (down) at point x. The addition law
Eqs. (2) and (3) (for ‘‘hat’’ matrices) is equivalent to state
that P�ðx1Þ and P�ðx2Þ on two sides of a conductor A are

related through its ‘‘hat’’ scattering matrix ŜA as

P�ðx1Þ
Pþðx2Þ

� �
¼ ŜA

Pþðx1Þ
P�ðx2Þ

� �
: (10)

In the physical picture where one represents the scattering
processes as random events with certain transmission or
reflection probabilities, the above equation has a simple
interpretation when one focuses on its first and fourth raw
P�;" and P�;#: it accounts for the conservation of probabil-

ity in the scattering events; i.e., it is the master equation of
the underlying Brownian motion undertaken by the inci-
dent electrons. Let us now introduce two new 4-vectors,
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jðxÞ and �ðxÞ defined as

j ðxÞ ¼ ½PþðxÞ � P�ðxÞ�=ðeRshÞ (11)

� ðxÞ ¼ ½PþðxÞ þ P�ðxÞ�=2 (12)

(with e < 0). Now, using the parametrization Eq. (6) and
(9) for infinitely thin layer, and writing Eq. (10) in term of
jðxÞ, �ðxÞ, we arrive at

j� ¼ �1=ðe��RshÞ@x�� (13)

@xj� ¼ 4�sf=ðeRshÞ½��� ���� (14)

which are precisely the VF equations [3]. Hence, for a
collinear system, C-RMT simply reduces to VF theory. In
its original form, however, VF theory does not account for
the presence of Sharvin resistance. Here, the boundary
conditions are given by the Landauer formula: the presence
of a potential drop eV between the reservoirs located at,
say, x ¼ 0 and x ¼ L, imposes Pþ�ð0Þ ¼ eV and
P��ðLÞ ¼ 0 which translates into

��ð0Þ þ ðeRsh=2Þj�ð0Þ ¼ eV (15)

��ðLÞ � ðeRsh=2Þj�ðLÞ ¼ 0: (16)

These mixed boundary conditions allows VF theory to
properly include the Sharvin resistance of the system and
correspond to adding half of the Sharvin resistance on both
sides of the sample. For a collinear system without inter-
face spin-flip scattering, we also recover the results of
Ref. [19].

Link with generalized circuit theory.—Let us now con-
sider Eq. (10) for a conductor whose transmission and
reflection matrices are purely diagonal, i.e., without any
spin-flip scattering. Let us further suppose that Rmx might
be nonzero but Tmx ¼ 0. Then, Eq. (10) takes the form

j�ðx1Þ¼ j�ðx2Þ¼ 1

eRsh

T�

1�T�

½��ðx1Þ���ðx2Þ� (17)

jmxðx1;2Þ ¼ � 2

eRsh

1� R1;2
mx

1þ R1;2
mx

�mxðx1;2Þ (18)

where T� is the transmission of an electron with spin� and

R1;2
mx are the mixing reflections from left to left (R1

mx) and
right to right (R2

mx). Equations (17) and (18) define the
generalized circuit theory [6] so that in the absence of spin-
flip scattering, C-RMT and generalized circuit theory are
completely equivalent. In fact, the renormalization coeffi-
cients of generalized circuit theory [6] were chosen such
that the calculation of the conductance with RMT and
generalized circuit theory fully agree with each other. We
find that the point of view of scattering taken in this Letter
is fully equivalent to the alternative view in term of local
current and chemical potential (VF, circuit theory), and one
can change from one to the other simply using Eqs. (11)
and (12).

Tabulation of C-RMT with VF set of parameters.—As
C-RMTand VF are equivalent, we can use the huge corpus
of experimental data that has been interpreted within VF to
parametrize C-RMT. The VF resistivities �"ð#Þ ¼ 2��ð1�
�Þ and spin-diffusion length lsf are in a one-to-one corre-

spondence with C-RMT: 1=lsf ¼ 2
ffiffiffiffiffiffiffi
�sf

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�" þ �#

p
, � ¼

ð�# � �"Þ=ð�" þ �#Þ, and ��=Rsh ¼ ð�" þ �#Þ=4. Simi-

larly, within VF, interfaces are described by a set of three
parameters, rb"ð#Þ ¼ 2rb�ð1� �Þ and � which correspond to

an effective layer of thickness d which is taken to be
infinitely thin while keeping the parameters � ¼ d=lsf
and rb� ¼ ��d constant. Figure 2(a) shows the spin accu-
mulation profile of a Co=Py spin valve calculated with
C-RMT. For the parallel and antiparallel configuration,
we also show an (independent) VF calculation using the
CNRS-Thales software developed by one of us (H. J.).
Both match perfectly as expected.
Application to spin torque: Wavy or not wavy?—We

consider the valve depicted in Fig. 1(a) and note ~JA, ~JN,

and ~JB the spin currents just before, in between, and after
the two magnetic layers FA and FB. For noncollinear
magnetization, spin current is not conserved, and the spin
torque on FA and FB is defined as

~� A ¼ ~JA � ~JN; ~�B ¼ ~JN � ~JB: (19)

Let us start with a simple geometric construction that
allows us to get a physical picture for the torque in a rather
general way. To do so, we need two hypotheses: (i) the
mixing transmission are small (it is the case for metallic

magnetic layers) so that ~JA and ~JB are parallel to the
magnetization of FA and FB respectively; (ii) the system
is thin enough for spin-flip scattering to be ignored in the

FIG. 2 (color online). (a) Spin accumulation in the middle of a
spin valve A ¼ Cu1000Co8Cu10Py8Cu5Au300 (thickness in nm)
for different angle � ¼ 0 (circles), 	=4, 	=2, 3	=4, and 	
(squares). Symbols stand for VF calculations while lines corre-
spond to C-RMT. (b) torque �Bð�Þ (per total current j) on the Py-
layer of A for various Py-thickness LPy from 0.5 nm (thick line)

to 15 nm (dashed line). (c) Stability angle �� as a function of LPy

for A (circles), B ¼ Cu1000Co8Cu10PyLPy
Cu1000 with � ¼ 0

(squares) and B with �CoCu ¼ �CoPy ¼ 0:25 (diamonds).
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active region so that ~�A ( ~�B) is perpendicular to ~JA ( ~JB).
The construction goes as follows, see Figs. 1(b) and 1(c):

first, we plot ~JA and ~JB which make the same angle � as the
magnetization of the respective magnetic layers; then, we

note that �tot � ~�A þ ~�B ¼ ~JA � ~JB does not depend on

the unknown ~JN and points from the tip of ~JB to the tip of
~JA. The construction of the torque is then straightforward:
the two vectors ~�A and ~�B are chosen such that they are
perpendicular to their respective layer and their sum goes

from the tip of ~JB to the tip of ~JA. This simple construction
gives, in particular, the sign of the torque as a function of
the angle �. We find that when, say, JB > JA, the torque on
the layer with the highest polarization (FB) can become
wavy [12,13], i.e., instead of favoring the parallel or anti-
parallel configurations, the torque stabilizes (or destabil-
izes depending of the direction of the current) a
configuration with a finite angle ��. The critical angle ��
where the torque vanishes verifies jJA=JBj ¼ cos��. On the
other hand, at small angle, one has the following develop-
ment jJA=JBjð�Þ ¼ 1� 
�2=2þ . . . (Current conserva-
tion imposes JA ¼ JB at � ¼ 0 and the ratio is an even
function of �) so that ‘‘waviness’’ is found when 
> 1. In
a symmetric structure, 
 ¼ 0 so that a finite asymmetry is
needed to enforce waviness.

Without spin-flip scattering, we find 
 ¼ ½�Br
�
B �

�Ar
�
A þ ð�B � �AÞr�Ar�B=Rsh�=ð�Br

�
B þ �Ar

�
AÞ where the

effective parameters �A and r�A include both the interface
and bulk properties of layer A. More generally, the cross-
over between normal and wavy can be discussed by look-
ing at the small angle expression derived by Fert et al.
[Eq. (5) in [20], we omit the ballistic corrections]. It can be
obtained by relating the spin accumulation in the spacer for
� � 1 to spin current and spin accumulation at � ¼ 0, and
then applying Eq. (18). It reads

d�B
d�

���������¼0
¼ � @

e

�
j" � j#

4

���������¼0
þ�" ��#

2eRsh

���������¼0

�
: (20)

When, for instance, one crosses the asymmetry border
from JA > JB > 0 to JB > JA > 0, the spin accumulation,
proportional to the gradient of the spin current, changes
from negative to positive, and the second term in Eq. (20)
becomes negative and begins to compensate the first one.
The crossover from normal to wavy occurs when, by a
further increase of asymmetry, the spin accumulation term
wins and reverse the sign of d�B=d�j�¼0 (see Gmitra and
Barnaś [21] for an extensive discussion of the normal to
wavy crossover).

Typical examples of our numerical results are presented
in Fig. 2 for Co=Cu=Py samples in which the asymmetry
comes from the short lsf and large polarization and resis-
tivity of Py. Starting from a small value of LPy, an increase

of the asymmetry and finally a crossover to wavy (�� � 0)
can be obtained by increasing LPy as shown in Figs. 2(b)

and 2(c). By comparing the curves in samples with and
without Au on the right of the valve, one sees that the short

lsf of Au in a layer close to Py tends to increase the
asymmetry and the waviness. On the other hand, interface
spin-flip is found to favor a normal spin torque. In the
experimental results of Boulle et al. [13], a wavy behavior
was found for Cu=Co=Cu=Py=Cu=Au structures with
equal thicknesses (8 nm) for Co and Py.
Conclusion.—Our approach, C-RMT, not only provides

a conceptual connection between quantum and classical
approaches, but also allows for new practical develop-
ments. For instance the numerical solution shown in
Fig. 2, based on the ‘‘hat’’ version of Eqs. (2) and (3) is
immediate to implement and extremely fast. The general-
ization of C-RMT to three dimensions will allow real time
coupling between transport and micromagnetic simula-
tions. Other applications will include multiscale modeling
(to treat purely quantum regions like MgO tunneling bar-
riers) and superconductivity [22].
We thank A. Brataas, G. Bauer, and T. Valet for fruitful
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M. Gmitra and J. Barnaś Phys. Rev. Lett. 96, 207205
(2006).

[13] O. Boulle et al., Nature Phys. 3, 492 (2007).
[14] C.W. J. Beenakker, Rev. Mod. Phys. 69, 731 (1997).
[15] S. Datta, Electronic Transport in Mesoscopic Systems

(Cambridge University Press, Cambridge, 1995).
[16] M.D. Stiles, J. Appl. Phys. 79, 5805 (1996); Phys. Rev. B

54, 14679 (1996).
[17] K. Xia et al., Phys. Rev. B 65, 220401 (2002); 73, 064420

(2006).
[18] M.D. Stiles and A. Zangwill, Phys. Rev. B 66, 014407

(2002).
[19] Y. N. Qi and S. Zhang Phys. Rev. B 65, 214407 (2002).
[20] A. Fert et al., J. Magn. Magn. Mater. 272–76, 1706 (2003).
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