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An odd number of gapless Dirac fermions is guaranteed to exist at a surface of a strong topological

insulator. We show that in a thin-film geometry and under external bias, electron-hole pairs that reside in

these surface states can condense to form a novel exotic quantum state which we propose to call

‘‘topological exciton condensate’’ (TEC). This TEC is similar in general terms to the exciton condensate

recently argued to exist in a biased graphene bilayer, but with different topological properties. It exhibits a

host of unusual properties including a stable zero mode and a fractional charge �e=2 carried by a singly

quantized vortex in the TEC order parameter.
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Introduction.—Recent advances in studies of band insu-
lators with strong spin-orbit coupling revealed the exis-
tence of new topological invariants that characterize these
materials [1]. Among the three-dimensional time-reversal
(T ) invariant insulators, the most interesting phase implied
by this classification is the ‘‘strong’’ topological insulator
(STI), characterized by gapless fermionic states residing at
its surface with an odd number of topologically protected
nodes. These gapless states exhibit linear dispersion and
behave as massless Dirac fermions familiar from the phys-
ics of graphene. Several real materials have been identified
as STIs in pioneering experiments [2,3] completed shortly
after the theoretical predictions [4]. These rapid develop-
ments give hope that the new state of quantum matter
realized in STIs might be relatively common in nature
and raise the prospects of future practical applications.

The existence of an odd number of Dirac fermions leads
to a number of exotic properties associated with surfaces of
a STI. These include an exotic superconducting state in-
duced by a proximity effect that supports Majorana fermi-
ons [5], a T -breaking phase which exhibits a fractional
quantum Hall effect [6], and an unusual ‘‘axion’’ electro-
magnetic response [6,7].

The wealth of exotic phenomena listed above stems
from the possibility of inducing various types of mass
terms in the otherwise massless Dirac fermion states at
the surface of a STI. In this Letter we introduce and study a
new type of mass gap that can be induced by a Coulomb
interaction between the surface states of a thin STI film and
can be characterized as a ‘‘topological’’ exciton conden-
sate (TEC). The idea is motivated by recent proposals to
realize an exciton condensate in a symmetrically biased
graphene bilayer [8,9]. We argue below that TEC in a STI
filmmight be more easily realized than in graphene and is a
different, genuinely topological phase, distinguished by the
presence of a zero-energy mode and fractional charge
associated with its vortices.

Consider a film made of a STI placed inside a capacitor
as in Fig. 1(a). Imagine for simplicity that each surface
harbors a single Dirac cone with the chemical potential �
initially tuned to the neutral point � ¼ 0. When the ca-
pacitor is charged the Fermi levels in the two layers move
in the opposite direction, creating a small electron Fermi
surface in one layer and a small hole Fermi surface in the
other. For arbitrarily weak repulsive interaction such a
system will form an exciton condensate which may be
pictured as a coherent liquid of electron-hole pairs residing
in different layers.
In what follows we use a simple model for the surface

states to show how exciton condensation can be induced by
the interlayer Coulomb interaction. By examining this
model we then deduce some interesting properties of the
underlying TEC. Specifically, we demonstrate that an iso-
lated singly quantized vortex in the complex scalar order
parameter characterizing TEC contains a zero mode and
carries topologically protected exact fractional charge

FIG. 1 (color online). (a) Schematic of the proposed device.
(b) The exciton condensate effectively joins the surfaces of the
STI film resulting in toroidal topology. Arrows illustrate the
magnetic field distribution of a planar monopole representing a
vortex in the effective theory.
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�e=2. We put our findings in the context of axion electro-
dynamics, the low-energy effective theory of STIs, and
discuss prospects for experimental realization and detec-
tion of the predicted phenomena.

Model.—The gapless states associated with the two
surfaces of the biased STI film can be described at low
energies by a Dirac Hamiltonian [5]

H ¼ X
l¼1;2

c y
l ðvl� � p̂��lÞc l þUn1n2; (1)

where c l ¼ ðcl"; cl#ÞT denotes the fermion spinor in sur-

face layer l, � ¼ ð�x; �yÞ is the vector of Pauli matrices in

the spin space, p̂ ¼ �ir, and vl ¼ ð�1Þlþ1v represents
the Fermi velocity, assumed to be opposite at the two

surfaces, and nl ¼ c y
l c l. We take �l ¼ �þ ð�1ÞlV,

with � the intrinsic chemical potential and V the external
bias. The last term in (1) describes the short-range part of
the interlayer Coulomb potential, a sufficient minimal
interaction for the formation of EC [10]. Also, we assume
the film to be sufficiently thick so that any direct hopping
of low-energy electrons between the surfaces can be
neglected.

To describe the exciton condensation we decouple the
interaction term in H using a matrix-valued order parame-

ter M ¼ Uhc 1c
y
2 i. The expectation value is taken with

respect to the mean-field Hamiltonian

HMF ¼ H0 þ ðc y
1Mc 2 þ H:c:Þ þ 1

U
trðMyMÞ; (2)

where H0 denotes the kinetic term in (1). At this point it is
useful to organize the Fermi fields into a single
4-component spinor� ¼ ðc 1; c 2ÞT . We can write HMF ¼
�yH�þ 1

U trðMyMÞ with a 4� 4 matrix Hamiltonian

H þ� ¼ v� � p̂� V M
My �v� � p̂þ V

� �
: (3)

Various forms of matrix M describe different possibil-
ities for the TEC order parameter. When � is close to zero
an order parameter that opens up a gap in the excitation
spectrum will be favored because it leads to an overall
reduction in kinetic energy. In the uniform system this will
occur only for M diagonal in the spin space, i.e., M ¼ m1
with m a complex constant, since the part of H propor-
tional to m then anticommutes with the kinetic term. The
spectrum of H then contains four branches and reads

Ek�s ¼ ��þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvjkj þ sVÞ2 þ jmj2

q
; �; s ¼ �1:

(4)

Physically, this form of the matrix M implies nonzero

expectation values hc1"cy2"i ¼ hc1#cy2#i ¼ m=U. We also

note that this is the only choice of the order parameter
that leaves the Hamiltonian T -invariant.

Exciton condensate.—When � ¼ 0 and V � 0 the ex-
citon instability of our Hamiltonian (1) is formally equiva-
lent to the Cooper instability in a metal and occurs at

infinitesimal coupling U. To see what happens when � is
slightly detuned from zero, we consider the gap equation
form (now assumed to be real) obtained by minimizing the
ground state energy Eg ¼ P

k�s
0 Ek�s þ Nm2=U with re-

spect to m. This reads

m

U
¼ � 1

2N

X
k�s

0 m

Ek�s þ�
; (5)

where the prime denotes a sum over the occupied states
(Ek�s < 0) only. For general values of�, V, and U the gap
equation must be solved numerically. One can, however,
extract the value Uc of the critical coupling beyond which
TEC is formed. In the experimentally relevant regime� �
V � �, where � denotes the high-energy cutoff of the
order of bandwidth, we find

Uc ’ 4�

�
1þ V

�
ln
V

�

��1
: (6)

The critical coupling is large, of the order of bandwidth,

unless � � Ve��=V , in which case Uc becomes small and
eventually reaches zero when � ! 0. In this limit the gap

equation can be solved explicitly to obtain m �
2

ffiffiffiffiffiffiffiffi
V�

p
e��2=UV . In order to achieve exciton condensation

for a given coupling strength U, it is essential to tune � as
close to zero as possible and apply high bias voltage V.
Henceforth we consider only the � ¼ 0 situation.
Because of its exponential dependence on the coupling

strength, it is difficult to give a truly quantitative estimate
of m and the relevant TEC transition temperature Tc for a
realistic STI film. In the context of the graphene bilayer,
the estimates of Tc range from sub-Kelvin up to the room
temperature, depending on the approximation employed
[8,9,11]. Although we do not attempt such a quantitative
analysis here, we note that the situation in STI might be
quite similar. On the one hand, the intrinsic energy scales
in known STIs are somewhat smaller than in graphene. On
the other hand, screening is known to reduce the mean-field

Tc by a factor �eN , where N denotes the number of
surface Dirac modes. Formation of TEC in a STI filmmade
from Bi2Se3 will be therefore aided by the fact that this
material exhibits N ¼ 1 [2] compared to N ¼ 4 in
graphene (due to valley and spin degeneracies).
Vortex zero modes.—In the following we adopt the point

of view that, based on the above analysis, formation of
TEC is likely to occur under experimentally achievable
conditions and focus on its unique properties. To this end it
is convenient to write the Hamiltonian (3) in a more
customary form using the Dirac matrices in the Weyl
representation, �j ¼ i�2 � �j, j ¼ 1; 2; 3, �0 ¼ �1 � 1,
and �5 ¼ �i�0�1�2�3 ¼ �3 � 1, where �j are Pauli ma-

trices in the layer space. We obtain

H ¼ �0ð�1p̂x þ �2p̂y þ V�0�5 þ jmje�i�5�Þ; (7)

where we have set v ¼ 1 and used a polar representation
m ¼ jmjei� of the complex TEC order parameter.
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The Hamiltonian (7) formally coincides with the one
used to describe the effect of EC near one of the valleys
of the biased graphene bilayer system [10]. That work
established existence of an exact zero mode of the
Hamiltonian (7) in the presence of a singly quantized
vortex in the EC order parameter m ¼ m0e

i’, with ’ the
polar angle. The zero-energy eigenstate has the form�0 ¼
ðf; g; ig	;�if	ÞT with f ¼ Ae�m0rJ0ðVrÞ, g ¼ �iAei� �
e�m0rJ1ðVrÞ, and A the normalization constant. In gra-
phene, valleys always come in pairs. The fermionic zero
modes are thus doubled and split due to intervalley scat-
tering. Because of this, no exact zero modes survive in the
graphene bilayer.

In a STI, by contrast, there is always an odd number of
valleys associated with the surface [1]. When N ¼ 1, as
in Bi2Se3, the zero mode attached to a singly quantized
vortex will remain exact, as long as the vortex stays well
separated from other vortices or system edges. This find-
ing, along with the fractional charge discussed below,
constitutes the key universal difference between the STI
exciton condensate and other proposed exciton conden-
sates and is the main result of this work.

For general odd N > 1 we expect N � 1 zero modes
to split symmetrically around zero energy while the re-
maining zero mode will persist. This conclusion follows
from the property �2H 	�2 ¼ H which together with
�2
2 ¼ �1 implies the spectral symmetry around the zero

energy of eigenstates of H . Specifically, for each eigen-
state �E of energy E there exists an eigenstate ��E with
energy �E. Here � ¼ �2K is an antiunitary operator and
K denotes complex conjugation. It also holds that
f�;H g ¼ 0.

Fractional charge.—A localized zero mode in a particle-
hole symmetric system is known to carry a fractional
charge �e=2 [12–15]. Thus, we expect our vortices to be
fractionally charged. To see how this occurs in the present
system and also to deduce some of its other interesting
properties, let us consider an operator O, represented by a
constant 4� 4 Hermitian matrix, acting in the space of
wave functions �EðrÞ. Following [16] consider now the
quantity

O 
 X
E

h�EjOj�Ei ¼ 1

4
N trðOÞ; (8)

where N is the total number of quantum states in a suitably
regularized system (e.g., on the lattice and in finite vol-
ume). The last equality in (8) follows from the complete-
ness of states. We may write

O ¼
�X
E<0

þ X
E>0

�
h�EjOj�Ei þ h�0jOj�0i: (9)

The spectral symmetry generated by � and its anti-
unitarity, expressed as h��1j��2i ¼ h�1j�2i	, implyP

E>0h�EjOj�Ei ¼ P
E<0h�Ejð��1O�Þyj�Ei. If O fur-

thermore commutes with �, then the last term becomes
simply

P
E<0h�EjOj�Ei and we can combine Eqs. (8) and

(9) to obtain

X
E<0

h�EjOj�Ei ¼ 1

2

�
N

4
trðOÞ � h�0jOj�0i

�
: (10)

The expectation value of an observable represented by a
constant 4� 4 matrix that commutes with �, taken over
all occupied negative-energy eigenstates of H , is deter-
mined solely by the value of trðOÞ and the zero-mode
eigenstate of H . For an infinite system in continuum
Eq. (10) will be useful for quantities independent of N;
this occurs when O is traceless or else for quantities
represented as differences so that N trðOÞ drops out. In
such cases the expectation value only depends on the
zero mode and its value is expected to be robust. Specific
examples follow below.
The charge operator is represented by a 4� 4 unit

matrix OQ ¼ e1. The charge bound to a vortex can be

expressed as

QV ¼ e
X
E<0

ðh�Ej1j�Ei1 � h�Ej1j�Ei0Þ; (11)

where subscripts 1 and 0 refer to the state with one and zero
vortices, respectively. Using Eq. (10) we find QV ¼ � e

2 �h�0j�0i1 ¼ � e
2 , as expected. We note that Eq. (11) as-

sumed the zero mode to be unoccupied; if we occupy it by
an electron then the vortex charge becomes þe=2.
Other quantities of interest include the spin S and the

axial chargeQ5 carried by the vortex, defined as the charge
difference between the layers. These are represented by
matrices OS ¼ 1

2�0 ~��5 and OQ5 ¼ e�5. Unfortunately

these anticommute with � making Eq. (10) inapplicable.
A quantity that can be calculated is the interlayer spin
polarization �S, represented by O�S ¼ 1

2�0 ~�. A straight-

forward calculation shows that, in the presence of a vortex,
h�Sxi ¼ h�Syi ¼ 0 while h�Szi varies smoothly from 1

2 to

0 as we tune V=m from 0 to infinity.
The symmetry generated by � is a combination of T

and spatial parity P . The latter will be broken in the pres-
ence of nonmagnetic impurities and the zero mode will no
longer be exact. However, the following general argument
shows that the fractional charge remains precisely quan-
tized as long as the bulk is gapped and T is preserved.
Axion electrodynamics.—As demonstrated in Refs. [6,7]

the response of STI to external electromagnetic field is that
of an ‘‘axion’’ medium [17] and can be mathematically
implemented by adding a term

�Laxion ¼ �

2�

e2

hc
B �E (12)

to the usual Maxwell Lagrangian. An ordinary insulator
has � ¼ 0 while the STI exhibits � ¼ �, the two values
permitted by the time-reversal symmetry. When a surface
of a STI is gapped by a T -breaking perturbation, such as
an applied magnetic field, � varies smoothly between �
and 0. As a result the surface behaves as a quantum Hall
fluid [6,17].

PRL 103, 066402 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

7 AUGUST 2009

066402-3



As noted above, TEC does not break T . Instead, the
TEC order parameter effectively identifies the opposite
surfaces of the film by allowing, at the mean-field level
of the Hamiltonian (2), the electrons to hop between them.
Dirac fermions at the surfaces are gapped without violating
T by a perturbation that effectively removes the surfaces
as illustrated in Fig. 1(b). Because the TEC order parame-
ter is in general complex, the electrons hopping between
the surfaces may acquire a nontrivial phase. This is easily
included by postulating twisted periodic boundary condi-
tions with a twist equal to the phase of the TEC order
parameter �. The situation is easiest to visualize in the
context of a lattice model of STI where electrons traversing
the bonds that connect the two surfaces acquire a phase �.
This extra phase can also be viewed as resulting from an
electromagnetic vector potential 	A ¼ ẑ�ð�0=aÞ local-
ized in the layer between the surfaces, with �0 ¼ hc=e
the flux quantum and a the lattice spacing.

In a vortex configuration with �ðrÞ ¼ ’ it is easy to see
that 	AðrÞ has the form of a planarmonopole: the magnetic
field 	B radiates outward from the vortex center in the
plane of the surface as illustrated in Fig. 1(b). The total flux
is�0. This vector potential is fictitious in the sense that 	B
cannot be detected by an outside probe. To electrons,
however, 	A is indistinguishable from the real vector
potential and must be included in Eq. (12) when evaluating
the response of the STI. A unit magnetic monopole in a ‘‘�
vacuum’’ described by Eq. (12) is known to carry electric
charge�eð�=2�þ nÞwith n integer [18]. Applied to TEC
this gives vortex charge �eð1=2þ nÞ, consistent with our
finding of the fractional charge �e=2 bound to the vortex.

Outlook and open questions.—Recent advances in ma-
terials engineering and fabrication give hope that the exotic
state of matter identified in this work can be achieved and
probed in the near future. From an experimental point of
view, there are several significant advantages of the pro-
posed phase. First, we believe that making an exciton
condensate between the surfaces of a single film, rather
than from two 2D materials (e.g., graphene) with an insu-
lator between them, is easier because it does not require
creating a pinhole-free insulating layer with defect-free
junctions to the two 2D materials. Second, attaching leads
to a surface of a film should be considerably easier than
attaching leads to graphene. Once the leads are in place it
should be straightforward to identify the onset of the ex-
citon condensation in a transport measurement as demon-
strated in recent literature [19]. Third, we note that the
existence of the zero-energy Dirac fermion can be detected
in the same way as a standard midgap impurity state by
optical methods or in a careful transport measurement. In
the TEC phase a transport measurement will reveal a gap at
low temperature. As the temperature nears the transition
temperature, conduction becomes dominated by the
charges bound to vortices and is proportional to the number
of thermally excited vortices. Fractional charge can be
probed, at least in principle, by the shot noise analysis of
resistivity [20].

From a theoretical point of view, TEC in STI film is
fundamentally interesting for several reasons. To our
knowledge, TEC is the first example of a new symmetry-
breaking phase enabled by the special properties of topo-
logical insulators. It differs from the superconducting state
generated at the surface by proximity effect [5] because in
that case there is no new symmetry breaking. It differs from
the ordinary exciton condensate, which is in the same
universality class as a 4He film, because the zero mode
attached to a vortex is stable. In the case of graphene
bilayer the zero modes are not protected due to intervalley
scattering. In this respect as in several others, topological
insulators allow the realization of physics that is spoiled in
graphene by intervalley scattering. The consequence is a
distinct low-temperature phase of matter with fractionally
charged topological excitations whose exchange statistics
presents an interesting open question.
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