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A new semiclassical method is proposed to obtain accurate ground-state energies for many-electron

systems. The method borrows its semiclassical character from Thomas-Fermi (TF) theory, but improves

upon it by including exchange-correlation effects, at least approximately. We illustrate our method

(correlated TF method) on simple models of 1D-interacting electrons, showing that it yields dramatic

improvements over TF theory, particularly in the strongly correlated regime.

DOI: 10.1103/PhysRevLett.103.066401 PACS numbers: 71.10.�w, 31.15.E�, 31.15.xg, 71.15.Mb

Determining accurate ground-state energies of matter at
all levels of aggregation has remained one of the major
challenges of computational chemistry and physics for the
past 80 years. Solving numerically the N-electron
Schrödinger equation is implausible for systems contain-
ing more than a few electrons, but ingenious ideas have
been developed to find approximate solutions (Ref. [1]
presents a good overview from a quantum-chemistry
viewpoint).

In the midst of recent resurgent interest in the semiclas-
sical origins of density-functional theory (DFT) [2,3], we
put forth a new idea inspired by an old method to calculate
ground-state energies of many-electron systems. We start
by focusing attention on the various ways in which differ-
ent methods account for Pauli’s principle, because the
central result of our work is the observation that accurate
ground-state energies can be obtained within a semiclassi-
cal framework by invoking the antisymmetry of the wave
function at a late stage of the calculation, rather than from
the start as present-day methods do.

In the Hartree-Fock approximation, for example, the
antisymmetry requirement of the wave function enters
from the very start when one chooses a single Slater
determinant as ansatz for the ground-state wave function.
The Hartree-Fock solution is then the determinant that
minimizes the expectation value of the Hamiltonian. The
antisymmetry of the wave function is also guaranteed from
the start in all methods that build upon Hartree-Fock by
including correlation effects either perturbatively (Moller-
Plesset perturbation theory) or variationally (configuration
interaction). Density-functional theory [4] deals with
Pauli’s principle in a more subtle way. After all, it can be
formulated without ever mentioning the N-electron wave
function, so its antisymmetry is encoded into the functional
dependence of the energy on the ground-state density. In
the Kohn-Sham scheme [5], however, the auxiliary system
of noninteracting electrons is forced to satisfy Pauli’s
principle, reducing the work that the exchange and corre-
lation functionals must do in order to account for the
energetic consequences of antisymmetry. How orbital-

free DFT [6] deals with antisymmetry can be better seen
in phase space, as shown below for its precursor, the
Thomas-Fermi (TF) approximation.
Thomas-Fermi theory: Two points of view.—In contem-

porary DFT language, the Thomas-Fermi ground-state
energy ETF [7,8] consists of a local-density approximation
to the noninteracting kinetic-energy functional, Tloc

s ½n�,
together with a Hartree term U½n� accounting for
electron-electron interactions:

ETF½nðrÞ� ¼ Tloc
s ½nðrÞ� þU½nðrÞ� þ

Z
drnðrÞvextðrÞ:

(1)

In Eq. (1), nðrÞ stands for the ground-state electron density,
and vextðrÞ represents any external potential that might be
present (e.g., the potential due to the nucleus, for an

isolated atom). The kinetic-energy functional Tloc
s ½nðrÞ� ¼

3
10 ð3�2Þ2=3 R drnðrÞ5=3 is designed to yield the exact energy
for a noninteracting electron gas of uniform density. The
Hartree term for Coulomb-interacting electrons has the
classical form U½nðrÞ�¼ 1

2

RR
drdr0nðrÞnðr0Þ=jr�r0j (we

use atomic units throughout).
Requiring that the energy is a minimum with respect to

density variations, subject to the additional constraint that
the number of particles N is fixed,

R
nðrÞdr ¼ N leads to

the Thomas-Fermi equation

3

10
½3�2nðrÞ�2=3 þ vextðrÞ þ vH½n�ðrÞ �� ¼ 0; (2)

where vH ¼ �U½n�=�n is the Hartree potential, and � is
the chemical potential that guarantees satisfaction of the
number constraint. The self-consistent solution of Eq. (2)
produces a density that approximates the true density
roughly, i.e., missing atomic shell structure, and this den-
sity in turn yields an approximate ground-state energy via
Eq. (1).
But there is an alternative and equivalent way of finding

ETF [9]. We look at it in phase space, where important
features of the Thomas-Fermi method are unveiled. Define
the classical Hartree density of states �clð"Þ as
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�clð"Þ ¼ 1

ð2�Þ3
Z

dpdr�ð"� hclðp; rÞÞ; (3)

where the integrals are done over all of phase space and the
dynamics is governed by the classical single-particle
Hamiltonian hclðp; rÞ ¼ p2=2þ vextðrÞ þ vHðrÞ. Then
the self-consistent solution of

N ¼
Z "F

�1
�clð"Þd" and ETF ¼

Z "F

�1
"�clð"Þd" (4)

leads to the same energy ETF as before, Eq. (1). The Fermi
energy "F coincides with the chemical potential � ¼
dETF=dN of Eq. (2). How Pauli’s principle is satisfied is
now transparent: keep adding particles occupying each a
volume h3 of phase space [ð2�Þ3 in atomic units], until the
available phase space has filled up. �clð"Þ is the first (Weyl)
term in the semiclassical Gutzwiller expansion [10] of the
Kohn-Sham density of states (see, e.g., Refs. [11,12]). The
smooth part of the Kohn-Sham staircase function Ssð"Þ ¼P

n�ð"� "nÞ, where the "n are exact Kohn-Sham eigen-
values and � is the Heaviside step function, is typically
well approximated by its classical counterpart

Sclð"Þ �
Z "

�1
d"0�clð"0Þ; (5)

as illustrated schematically in the left-hand panel of Fig. 1.
While Sclð"Þ is never a poor approximation, the approxi-
mation is better for systems that behave more classically.
Systems with more localized particles, such as strongly
correlated systems, are one example.

It is apparent that there are two main aspects to the
Thomas-Fermi approximation. First, interactions are
treated in a mean-field manner. Second, it is a semiclassical
approximation in the sense we have just described. Both of

these approximations together lead to efficient calculations
even for relatively large systems.
These two approximations are, however, separate, and

therefore it should be possible to use only one. One could
imagine an approximation that treats the interactions ex-
plicitly but is still semiclassical in the same sense, or one
that is mean-field but not semiclassical. Any modification
of this type should lead to more intensive calculations, but
of course the anticipated payoff is greater insight into the
system of interest. Ullmo et al. [13] proceed along these
lines by including correction terms that take into account
quantum effects that are neglected by the semiclassical
form of Thomas-Fermi theory; we explore the alternate
route of including interactions explicitly in a Thomas-
Fermi–based framework.
Employing the notation R � ðr1; . . . ; rNÞ, and P �

ðp1; . . . ;pNÞ, the classical N-electron density of states

�ðNÞ
cl ðEÞ corresponding to the classical N-electron

Hamiltonian HclðP;RÞ is

�ðNÞ
cl ðEÞ ¼ 1

ð2�Þ3N
Z

dPdR�ðE�HclðP;RÞÞ; (6)

and the N-electron analog of the smooth staircase function
of Eq. (5) is now

SðNÞ
cl ðEÞ �

Z E

�1
dE0�ðNÞ

cl ðE0Þ: (7)

But this function of energy does not go through the exact

(quantum) N-electron staircase SðNÞðEÞ ¼ P
n�ðE� EnÞ,

where the En are the energy eigenvalues of the
N-electron interacting system (see right-hand panel of

Fig. 1). SðNÞ
cl ðEÞ typically grows much faster (factorially)

than the quantum staircase because the latter consists of
antisymmetric states only, and nowhere in Eqs. (6) and (7)
has antisymmetry been invoked. Classical particles are
distinguishable, so SNclðEÞ approximates the much steeper

staircase comprised of states of all symmetries (not de-
picted in Fig. 1). We must introduce the symmetry by
counting along this steeper staircase up to the level with
the correct symmetry. This is analogous to introducing the
Pauli exclusion principle in standard Thomas-Fermi theory
by integrating up to the Fermi energy. It is, however, a
different perspective than is usually taken when finding the
ground state of a fermionic system. Instead of projecting
the Hamiltonian onto the correct symmetry character of the
permutation group, we include all symmetries of the per-
mutation group and convert the problem into one of state
counting, that is, counting the number of states (of any
symmetry) that have an energy lower than that of the first
totally antisymmetric one. We call this number N .
Knowledge of N yields a definite prediction for the

ground-state energy as the upper limit of an energy inte-
gral:

Z ECTF

�1
�ðNÞ
cl ðEÞdE ¼ N ; (8)

(ε)clS

(N)
clS (E)

s(ε)S

(N)
S E( )

ε ε

N

E0 EF

FIG. 1. Schematic diagram, assuming a spectrum with no
exact degeneracies. Left-hand panel: The classical function
Sclð"Þ, Eq. (5), is a smooth approximation to the Kohn-Sham
staircase function Ssð"Þ. Right-hand panel: The N-electron clas-

sical function SðNÞ
cl ðEÞ does not go through the quantum

N-electron staircase SðNÞðEÞ, because the latter consists of anti-

symmetric states only. SðNÞ
cl ðEÞ is a smooth version of the

quantum-mechanical problem when symmetry is disregarded
(a much steeper staircase), and can be used to approximate the
true ground-state energy E0 via Eq. (8), if the number of states
N below the first totally antisymmetric state is known.
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and we dub ECTF the correlated Thomas-Fermi (CTF)
approximation to E0.

By projecting �ðNÞ
cl into the antisymmetric subspace,

Sommerman and Weidenmueller (SW) [14] have obtained
smoothed-out staircase functions that go correctly through
the N-particle steps in some simple model systems, one of
which we use later. But we are interested in accurate
ground-state energies, and SW only yields a qualitatively
good description of the antisymmetric staircase. We now
try CTF in three model systems where the exactN can be
found and then employed to obtain ECTF via Eq. (8). This
may seem circular, but it serves as a proof of concept that
CTF can yield accurate ground-state energies when N is
known accurately. It will also allow us to draw conclusions
regarding the regimes where CTF works best.

Case 1.—First, consider two spinless electrons in a one-
dimensional harmonic trap of unit frequency, interacting
via a harmonic potential of frequency �, which we vary
from 0 to 2. Figure 2 shows the energy as a function of
interaction strength. The exact energy is known analyti-

cally [15]. The exact N is easily found to be N ¼
b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�2

p
c þ 1, where b c floor function, which leads to

steps in the energy Eð�Þ. Leaving out the floor function
provides the most natural way of smoothing out the CTF
curve, and it is this smoothed-out curve that is depicted as
the solid line in Fig. 2. We observe that the CTF results run
very close to the exact curve along the whole range of
interaction strengths, improving dramatically upon both
TF and SW.

We have also looked at the analogous system with N up
to 15 particles for � ¼ 1. The accuracy of CTF increases
with the number of particles. The error decreases from
0.05% for N ¼ 3 to 5� 10�4% for N ¼ 15.

Case 2.—Figure 3 shows a similar trend for three spin-
less electrons interacting via a quartic attraction [the inter-

action term between two electrons is of the form
kðxi � xjÞ4]. Here we did an exact numerical diagonaliza-

tion in order to find N . Again, we see that CTF runs very
close to the exact curve for the whole range of values of k
considered.
Case 3.—Does the excellent performance of CTF

reported so far have something to do with the integra-
bility of the underlying classical dynamics (case 1) or its
near-integrability (case 2)? We have also calculated
the CTF energies for a simple nonintegrable system, 2
electrons interacting via a soft-Coulomb potential

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðx1 � x2Þ2

p
in a 1D box of length L. In spite of

the apparent simplicity of this model, the importance of
ergodicity can be assessed as the length of the box is
increased. Indeed, as concluded in Ref. [16], this system
displays hard chaos in the large-box limit, closely related
to the fact that, due to the low electron density in that limit,
the system becomes strongly correlated with the electrons
localizing in opposite extremes of the box. Table I shows
the numbers obtained when the same value of N ¼ 2 is
used for different box lengths. The performance of CTF
improves as L increases, due to the increased localization
leading to greater classical character. This suggests that
CTF might be particularly useful in the strongly correlated
regime.
Adding spin does not require fundamental modifications

of the procedure. Because only the combined spatial and
spin function must be antisymmetric, the constraint on the
spatial wave function to be totally antisymmetric is
dropped. Since the spin function consists of combinations
of only up and down spins, not all symmetries are allowed.
The goal then is to find the symmetry of the ground state
and use it when finding N . The pouring theorem of Lieb
and Mattis [17] is useful in determining possible permuta-
tion group character of the ground state. Once this is
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FIG. 2. Ground-state energy for two spinless electrons inter-
acting in one dimension via the potential 1

2�
2ðx1 � x2Þ2, calcu-

lated exactly (dashed line) and by different approximations:
standard Thomas-Fermi (dotted line), employing the antisym-
metric staircase of SW [14] (dot-dashed line), and our CTF
(solid line).
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FIG. 3. Ground-state energy for three spinless electrons inter-
acting in one dimension via the potential kðxi � xjÞ4, calculated
exactly (dashed line) and by different approximations: standard
Thomas-Fermi (dotted line), our CTF method (solid line), and
CTF when the number of states N below the first totally
antisymmetric state is calculated from perturbation theory
(dot-dashed line).

PRL 103, 066401 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

7 AUGUST 2009

066401-3



determined, the method follows the analogous procedure
already described.

Finally, we turn to the problem of finding N . Any
actual practical application of CTF will require a solution
to this problem. The naive idea of employing the single-
particle density of states to estimate N as

N �N TF ¼
Z ETF

�1
�clð"Þd"; (9)

in analogy to Eq. (8), is not adequate. To see this, con-
sider N electrons in a harmonic well of frequency !
interacting harmonically, as before, with strength �. We

find ETF ¼ N2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 þ�2N

p
=2, and Eq. (9) leads to

N TF ¼ ETF=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 þ�2N

p
¼ N2=2, a result independent

of the interaction strength �. But the actual value of N
depends on�. We observe the same behavior for the three
quartically interacting electrons, where an almost
�-independent value of N was found numerically via
Eq. (9). The � ! 0 limit of N , however, is correctly
given by Eq. (9). For cases 1 and 2, this limit is equal to
2 and 18, respectively.

A straightforward way of approximatingN is using the
number of states before the first totally antisymmetric state
as given by perturbation theory. The missing of avoided
crossings is not too important because the order of states
before the first antisymmetric one is irrelevant. It is only
the number of states in this window that matters. Figure 3
shows the results obtained by using N from perturbation
theory.

The perturbation method of finding N is most accurate
in the weakly correlated regime. CTF is expected to have
an advantage for strongly correlated systems, and using
perturbation theory to evaluate N would reduce this ad-
vantage. It makes sense therefore to consider using an
asymptotic expansion from the strictly correlated limit
[18]. In this limit the electronic wave functions become
delta functions centered at the points that would lead to a
minimization of the classical electrostatic potential energy.
The energy levels in this limit can therefore be approxi-
mated by expanding the potential energy term around these
points up to second order. This leads to a multiple har-
monic oscillator problem which can be solved, and which
for strongly correlated systems should give a fair approxi-

mation for N . This is where our research efforts will go
now.
As explained in Ref. [12], the correlation energy for an

N-electron system is not readily accessible from semiclas-
sical Wigner-Kirkwood expansions [19] or related tech-
niques [20]. These methods are normally employed to
obtain approximate density functionals for the Kohn-
Sham density matrix, from which all but the ‘‘correlation’’
pieces of the energy can be easily constructed. It is the
N-body Green function, rather than the Kohn-Sham one,
that must be used as input to obtain approximate correla-
tion energies. Our CTF results suggest that this route to
correlation energies is worth exploring.
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TABLE I. Exact, TF, and CTF (N ¼ 2) ground-state energies
for two electrons interacting via a soft-Coulomb potential ½ðx1 �
x2Þ2 þ 1��1=2 and confined in a box of length L atomic units.

L TF CTF (N ¼ 2) Exact

1 1:37� 101 1:35� 101 2:56� 101

10 2:75� 100 4:38� 10�1 5:12� 10�1

100 2:31� 100 2:05� 10�2 2:20� 10�2

1000 1:99� 100 1:40� 10�3 1:45� 10�3
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