
Thermodynamic Origins of Shear Band Formation and the Universal Scaling Law
of Metallic Glass Strength

Y.H. Liu,1 C. T. Liu,2,3 W.H. Wang,4 A. Inoue,1 T. Sakurai,1 and M.W. Chen1,*
1WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

2Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom Kowloon, Hong Kong
3Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

4Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China
(Received 18 May 2009; published 7 August 2009)

We report a universal scaling law, �y ¼ 3RðTg-RTÞ=V, that uncovers an inherent relationship of the

yield strength �y with the glass transition temperature Tg and molar volume V of metallic glasses. This

equation is derived from fundamental thermodynamics and validated by various metallic glasses with

well-defined yielding. The linearity between �y and Tg demonstrates the intrinsic correlation between

yielding and glass-liquid transition, which contributes to the basic understanding of the strength and

deformation of glassy alloys.
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One of the most attractive merits of glassy alloys is their
ultrahigh strength relative to the crystalline counterparts
[1–3]. Unlike dislocation slip in crystals, the room-
temperature (RT) yielding and deformation of metallic
glasses occur via the formation of nanosized shear bands
[3–10]. A number of micromechanisms have been pro-
posed to describe the spatially and temporally heteroge-
neous deformation. However, the physical process that
governs the yielding and strength of glassy alloys still
remains mysterious and has been the recent topic of intense
discussion [3,6–9]. It was noticed a long time ago that the
strength and Young’s modulus of metallic glasses correlate
with their glass transition temperatures, Tg [11–14]. By

incorporating the term of molar volume V, the RT fracture
strength of bulk metallic glasses (BMGs) has been found to
have a linear relation with Tg [15]. A number of attempts

have been made to explore the underlying physics of the
linearity [15–17]. However, these works usually resort to a
number of approximations and assumptions making their
analysis untransparent. Consequently, the physical princi-
ple of the correlation between the strength and glass tran-
sition temperatures of BMGs remains to be known. In this
report, we derive a universal scaling law from the funda-
mental thermodynamics and uncover the thermodynamic
origin of shear band formation and BMG yielding.

Fifteen BMGs used in this study cover five typical alloy
systems, including Zr-based, Cu-based, Ti-based, Ni-
based, and Fe-based BMGs. All of them show pronounced
plastic flow and thus the well-defined yield points can be
determined from stress-strain curves. The glassy nature of
the samples was ascertained by x-ray diffraction. Some of
them were further inspected by transmission electron mi-
croscopy. Thermal analysis was performed by using a
differential scanning calorimeter and differential thermal
analyzer with a heating rate of 20 K=min . Compressive
specimens with an aspect ratio of 2:1 were cut from as-cast
2-mm-diameter rods. Since sample alignment as well as

stress concentrations in compression testing can signifi-
cantly affect yield stress and compressive plasticity [18],
the two ends of the specimens used in this study were
carefully polished to be flat parallel and normal to the
axis of the rods. RT compression tests were carried out
with a nominal strain rate of 1� 10�4 or 5� 10�4=s.
Figure 1(a) shows the examples of stress-strain curves of

three BMG samples. The other 12 BMG samples also have
comparable or even larger plastic strains. The considerable
plastic deformation of these samples allows us to precisely
measure the yield points of the 15 alloys. As illustrated in
Fig. 1(b), the yield strength that corresponds to the for-
mation of a principal shear band is determined by the
crossover point from elastic to plastic portions with a
very small offset of 0.05%. Mechanical properties includ-
ing yield strength �y and Young’s modulus E along with

thermal properties such as Tg and melting temperature Tm

are summarized in Table I. The values of molar volumes V
of the BMGs in the table are calculated according to the
rule of mixtures [19]. To reveal the relationship between
strength and Tg, we plot the yield shear stress, �y � �y=2,

as the function of ðTg-RTÞ=V and ignore the trivial normal

stress dependence [10,20,21]. As shown in Fig. 2, the RT
yield shear strengths of the 15 BMGs show a distinct
dependence on ðTg-RTÞ=V in a linear manner.

In this study the well-defined yield strength spanning
from �1:7 to �4:0 GPa is used for analysis. It is known
that RT yielding of BMGs corresponds to the formation of
a principal shear band when the critical shear stress that a
material can sustain is reached [3,4]. According to recent
experimental observations and computer simulations, the
yield point of BMGs corresponds to the destabilized propa-
gation by the percolation of a large number of local shear-
ing events with a critical shear strain, �0 [5,8,9,15]. The
transition from local shearing to macroscopic shear bands
results from the dramatic increase of the atommobility and
softening along a shear plane motivated by the input of
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mechanical energy [22–24]. Thus, the transition is akin to a
process of stress driven glass-to-liquid transition [17,22–
25] and the yielding of BMGs can be rationally presumed
as a critical point at which the accumulated internal energy
by elastic deformation is high enough for the transition

from a glass to a supercooled liquid. Starting from the
fundamental laws of thermodynamics, we have dU ¼
dQþ dW, where dU is the increase of the internal energy,
dQ is the heat added to the system, and dW is the work
done to the system. Because the formation of principal
shear bands mainly depends on shear stresses, not pressure
[20,21], it only leads to a sample shape change, not volume
change. Thus, this process can be considered to be iso-
choric, i.e., dW ¼ Vs�0d�, in which Vs is the volume that
undergoes the transition; � is the shear stresses applied to
the shear band, and �0 is the critical shear stain leading to
the destabilization of local shearing events. The change of
the internal energy in the isochoric system can be ex-
pressed by dU ¼ �VsCvdT, where � the density, Cv is
the mass specific heat, and dT is temperature increment.
Since the time for the initiation of the shear band is
extremely short, the yielding can be fairly viewed as an
adiabatic process [26]. Moreover, the heat change caused
by the pseudo-second-order glass transition is insignificant
compared to the work done by applied force [27]. Thus, dQ
can be ignored and the work is considered to completely
transfer as the internal energy. Therefore, we have

Vs�0

Z �y

0
d� ¼ �Vs

Z Tg

RT
CvdT: (1)

Neglecting the weak temperature dependence of mass heat
capacity from RT to Tg [27], by integrating the equation we

can obtain

�y ¼ �CvðTg-RTÞ=�0; (2)

where Cv ¼ cv=M with cv the molar specific heat at a
constant volume and M is the molar weight. Owing to the
average molar volume of the BMGs V ¼ M=�, we thus get

�y ¼ cvðTg-RTÞ=ð�0VÞ: (3)

According to the Dulong-Petit law, the value of cv at RT

TABLE I. Summary of yield strength �y, Young’s modulus E, glass transition temperatures Tg, and calculated molar volume V of 15
BMGs from 5 alloy systems.

Label BMG �y (GPa) E (GPa) Tg (K) Tm (K) V (mm3=mol

A Zr62Cu15:4Ni12:6Al10 1.812 80 652 � � � 11 666

B Zr59Ta5Cu18Ni8Al10 1.817 96 673 � � � 11 669

C Zr41:2Ti13:8Cu12:5Ni10Be22:5 1.755 97 620 932 9949

D ðCu0:5Zr0:5Þ95Al5 1.824 90 693 � � � 10 570

E Cu60Zr20Hf10Ti10 2.160 107 754 1128 9504

F ðTi0:5Cu0:5Þ84Ni7Hf5Zr3Si1 2.254 105 687 � � � 9136

G Ni62:5Zr20Nb15Pd2:5 2.808 150 867 1368 8792

H Ni60Zr20Nb15Pd5 2.752 148 873 1353 8850

I Ni57:5Zr20Nb15Pd7:5 2.717 146 870 1351 8907

J Ni55Zr20Nb15Pd10 2.714 146 864 1349 8965

K Ni52:5Zr20Nb15Pd12:5 2.705 145 861 1352 9023

L ½ðFe0:8Co0:1Ni0:1Þ0:75B0:2Si0:05�96Nb4 4.177 208 818 � � � 6945

M ½ðFe0:6Ni0:4Þ0:75B0:2Si0:05�96Nb4 4.014 203 770 � � � 6864

N Fe76Si9:6B8:4P6 3.212 165 783 1271 7964

O ðFe0:76Si0:096B0:084P0:06Þ99:9Cu0:1 3.225 158 785 � � � 7956
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FIG. 1 (color online). (a) Three representative engineering
stress-strain curves of the BMGs with obvious plastic deforma-
tion and evident yield points. (b) The enlarged portion of Curve
H in (a) illustrating the determination of yield stress. The
symbols (C, H, and L) in the figure correspond to the alloys
given in Table I.
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and above is approximately equal to a constant, i.e., cv ¼
3R ¼ 24:94 J=mol � K (R is gas constant) for metals re-
gardless of their crystal structures. Additionally, the
Dulong-Petit law has been found to persist in BMGs
[27]. Therefore, the equation can be expressed as

�y ¼ 3RðTg-RTÞ=ð�0VÞ: (4)

In Fig. 2, we plot the relationship between �y and

ðTg-RTÞ=V as the solid line. As one can see, Eq. (4) fits

the experimental results well, verifying that there is an
intrinsic correlation between the yield strength of BMGs
and their glass transition temperatures. It is interesting to
note that the fitting slope is just equal to the Dulong-Petit
limit 3R while �0 is equal to 1. In comparison of Eq. (4)
with the empirical relation found by Yang et al. [15], one
can easily find that the slope of 50 in their study is actually
the product of Dulong-Petit limit 3R and the Schmid factor
2, both of which are invariable for BMGs. It is important to
mention that the scaling law has been derived based on the
fundamental thermodynamics without the employment of
any microscopic model. Thus, the current derivation does
not involve all the assumptions and approximations con-
cerning the microscale process [15–17].

On the basis of Eq. (4), we can deduce the correlation
among Young’s modulus E and Tg, which has been widely

discussed in the literature [11–14]. Since E ¼ �y="E ¼
2�y="E and the RT elastic limit ("E) of BMGs is approxi-

mately 2%, we can thus get

E ¼ 3Rð2="EÞðTg-RTÞ=V: (5)

Figure 3 illustrates the relationship between E and Tg, in

which the solid line is the plot of E vs ðTg-RTÞ=V with the

slope of 3Rð2="EÞ. Again, the experimental results remark-
ably follow the prediction, which further validates the
scaling law by another macroscopic variable.

The yielding of BMGs by the formation of principal
shear bands and subsequent strain softening has been
attributed to dramatic temperature rise that is closely re-
lated to the magnitude of the shear offset [17,22].
Moreover, the unique fractographs of metallic glasses,
i.e., vein patterns and liquid droplets, have led to the
assumption that the shear band destabilization is associated
with the melting of BMGs [28]. Through the scaling law,
we can clarify whether the shear band formation is con-
trolled by glass transition or by melting. On the basis of
Eq. (4), if the yielding is controlled by melting, we can
simply replace Tg by Tm and obtain the equation

�y ¼ 3RðTm-RTÞ=V: (6)

This equation suggests a linear relation between �y and

Tm=V with a slope of 3R. Alternatively, it is well known
that glass transition of bulk glass formers often takes place
at a temperature of about 0:6Tm [29]. According to Eq. (4),
the correlation between melting temperature Tm and BMG
strength can be described by

�y ¼ 3Rð0:6Tm-RTÞ=V: (7)

Apparently, the main difference between Eqs. (6) and (7) is
the slopes of �y vs Tm=V plots. As shown in Fig. 4, Eq. (7)

fits the experimental data very well with the slope of 1:8R,
not 3R suggested by the Eq. (6), unequivocally demon-
strating that the yielding of BMGs is intrinsically associ-
ated with glass transition, not melting.
For dislocation-free crystals, the shear strength is solely

determined by interatomic potentials for cooperative shear-
ing of periodic crystal lattices and has been estimated to be
�G=5 by Frankel [6]. Although metallic glasses are also
dislocation-free materials, their shear strength is only
�G=30 due to the existence of free volumes, where the
constituent atoms have a low atomic coordination, pro-
duced by local geometrical frustrations in the disordered

0.00 0.02 0.04 0.06 0.08 0.10
0

50

100

150

200

250

300

.

 A
 B
 C
 D
 E
 F
 G
 H
 I
 J
 K
 L
 M
 N
 O

E
 (

G
P

a)

( Tg-RT) /V ( K mol/mm3)

. .E=3R ( 2/εE) ( Tg-RT) /V
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FIG. 2 (color online). The relationship between yield shear
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constant.
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solids [3–5]. In the free-volume regions, where mechanical
coupling to the surrounding is weak, inelastic relaxation
becomes possible by local atom rearrangements, without
affecting the surroundings significantly. Thus, these sites
are the preferred regions to initiate the destabilization of
glassy structure caused by either temperature (glass tran-
sition) or applied shear stresses (local shearing). The linear
correlation between �y and Tg evidently demonstrates that

the strength of BMGs is controlled by a process of shear
transformation, equivalent to glass transition, and thus the
strength of BMGs is determined by the free volume or
loose atomic packing regions. This is, in principle, consis-
tent with all the microscopic models [4–6] on the hetero-
geneous plasticity of metallic glasses.

In summary, we have successfully derived a universal
scaling law based on the fundamental thermodynamics and
validated by various ductile BMGs. The linearity between
yield strength and glass transition temperature unambigu-
ously demonstrates that the elastic destabilization of me-
tallic glasses driven by external forces is equivalent to the
glass transition induced by mechanical energy, and that the
strength of BMGs is governed by local geometrical frus-
trations and defects in the disordered solids. This universal
strength equation has important implications in under-
standing the deformation mechanisms of disordered and
nonequilibrium solids and in designing new glassy alloys
with improved strength.
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