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Anaël Lemaı̂tre1 and Christiane Caroli2

1Université Paris Est–Institut Navier, 2 allée Kepler, 77420 Champs-sur-Marne, France
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We perform an extensive numerical study of avalanche behavior in a two-dimensional Lennard-Jones

glass at T ¼ 0, sheared at finite strain rates _�. From the finite size analysis of stress fluctuations and of

transverse diffusion we show that flip-flip correlations remain relevant at all realistic strain rates. We

predict that, in steady flow, the avalanche size scales as _��1=d, with d the space dimension.
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Considerable effort has been spent in recent years to
derive constitutive laws for plasticity in amorphous media
from a realistic description of the elementary mechanisms
of dissipation. It is now agreed that, in these disordered
systems, plasticity involves ‘‘shear transformations,’’ i.e.,
irreversible rearrangements (or flips) of small clusters of (a
few tens of) particles. By analogy with Eshelby transfor-
mations [1], Bulatov and Argon [2] inferred that such local
rearrangements should generate long-range elastic fields;
hence, since each flip alters the strain field in its surround-
ings, the flowing system is submitted to a self-generated
dynamical noise. From these premises, theories have de-
veloped along two very distinct lines. (i) Several meso-
scopic models [2,3] explicitly incorporate long-range
elastic interactions, but introduce many phenomenological
parameters, in order to take into account effects such as
thermal activation, short-range disorder, and flip duration,
which makes it quite difficult to test their assumptions and
evaluate their parameters. (ii) Mean-field theories—STZ
[4] and SGR [5]—rely upon the assumption that flips can
be viewed as uncorrelated, local events activated by an
effective thermal noise. These models, which do not spec-
ify how their effective temperature relates to the dynamical
noise, clearly overlook the possibility that elastic couplings
may give rise to correlations between flips. Indeed, it is
well-known from studies on driven pinned systems—such
as wetting lines or magnetic walls—that such long-range
interactions in general give rise to avalanches (see [6] and
references therein).

A first investigation of correlation effects has been per-
formed by Maloney and Lemaı̂tre using quasistatic (QS)
simulations of sheared two-dimensional (2D) glasses [7].
They found that, in this vanishing shear-rate regime, flips
are not independent, random events, but organize into
avalanches, the size of which scales roughly as the linear
size L of the system. The existence of such avalanches,
recently confirmed by Lerner and Procaccia [8], strongly
supports the view that correlation effects are essential
under shear. How and to which extent QS results carry
over to finite strain rates _�, however, remains an open
question. Indeed, under QS conditions, the duration of flips
and acoustic propagation delays is irrelevant on the shear-

ing time scale _��1 ! 1. This permits the separation of
unambiguously plastic events as stress or energy drops
occurring over a zero strain interval. The scaling with L
of the drop sizes then suffices to demonstrate the existence
of avalanches. At finite _�, such a separation can no longer
be performed, and one must devise other methods to char-
acterize possible spatiotemporal correlations between flips.
In this Letter, we present extensive numerical simulation

results on a 2D Lennard-Jones (LJ) glass at T ¼ 0, driven
over a wide range of finite strain rates, for various system
sizes. We rely on a systematic analysis of stress fluctua-
tions and of the self-diffusion coefficient in steady state,
helped by direct imaging of the velocity and strain fields. A
heuristic decomposition of the dynamical noise leads us to
a successful scaling prediction for the L and _� dependence
of the diffusion coefficient. We conclude that (i) even at
very high strain rates, plasticity remains due to local flip
events producing a long-range elastic field with measur-
able effects, beyond the initial (preparation-dependent)
transients, (ii) it is only at unrealistically high _� that
correlations between flips become negligible, and (iii) as
_� decreases, correlation effects become increasingly im-
portant and the dynamics continuously reaches its QS
behavior below a system-size-dependent crossover _�c.
On this basis, we propose that, above _�c, the length scale

of flip correlations (avalanche size) scales as _��1=d, with d
the space dimension.
We use the same 2D binary LJ mixture as that of

Ref. [9], and we work in standard reduced LJ units.
Large (L) and small (S) particle radii and numbers are

RL ¼ 0:5, RS ¼ 0:3, NL ¼ NSð1þ
ffiffiffi
5

p Þ=4, and particles
have equal masses m ¼ 1. These values ensure that no
crystallization occurs. The packing fraction of our L� L
systems is �ðNLR

2
L þ NSR

2
SÞ=L2 ¼ 0:9 as in [10], with L

ranging from 10 to 160.
In our glassy system, Rayleigh scattering results in

preferential damping of short wavelength sound modes.
In order to implement T ¼ 0 dynamics, we thus introduce
dissipative interparticle forces of the form fvisc:i ¼
m
�

P
j�ðrijÞðvj � viÞ with vi a particle velocity, and �ðrÞ a

nearly flat, normalized weight function vanishing at the LJ
cutoff r ¼ 2. We choose �ðrÞ / 1� 2ðr=2Þ4 þ ðr=2Þ8,
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which guarantees sufficient smoothness. This form of dis-
sipation, similar to that used by Maloney and Robbins, [11]
guarantees overdamping of sound for wavelengths � <
�c � �a2=�cs (with cs ’ 3:4 the transverse sound speed
in our system and a� 1 a typical interparticle distance).
We take � ¼ 0:2�LJ, so that �c=a� 5.

Simple shear deformation is imposed along the x axis,
using Lees-Edwards boundary conditions and SLLOD dy-
namics. The integration time step is usually dt ¼ 10�2�LJ,
but smaller values are used when needed to resolve small
strain steps for large values of _�. All configurations are
prepared by rapid quench from a random initial state. A
constant shear rate _� is then applied, and steady state is
reached beyond typical strains � ’ 0:3. All data presented
here have been obtained for strains ranging from 1 to at
least 4, which guarantees their relevance to steady state
dynamics. Strain rates _� range between 5� 10�5 and
10�2. We checked that, over this range, the kinetic energy
per atom remains & 2� 10�3.

In order to access the qualitative features of the dynam-
ics, we first inspect the instantaneous particle velocity field.
Typical images (see Fig. 1) exhibit highly localized regions
of enhanced mobility, with roughly quadrupolar symmetry,
which can be identified as ‘‘weak’’ zones close to their
instability threshold. The emergence, growth, and subse-
quent decay of these structures, visible on time series and
movies [12], demonstrate that the plastic response results
from the accumulation of flip events. This phenomenology
is closely similar to that observed in QS simulations, yet it
is also visible on movies where flip events trigger the
emission of signals propagating out through the medium
at velocities compatible with the transverse sound speed.
This is a direct confirmation of the idea that shear-induced
local rearrangements promote a long-range elastic field,
i.e. can be viewed as Eshelby transformations.

A second qualitative piece of information can be ob-
tained by constructing maps of the coarse-grained non-
affine strain field �xyðr; ��Þ accumulated over moderate

macroscopic strain intervals �� [13]. A typical sequence
of such maps is shown in Fig. 2, for a system of size L ¼
160, at _� ¼ 10�4. The existence of spatial correlations is
obvious: flips gradually organize themselves into quasi-
linear patterns roughly aligned with the Bravais axes of the
simulation cell. At this strain rate, an interval �� ¼ 1%
corresponds to a time �t ¼ 100, during which the acoustic

signal propagates over a distance �34� L=5. This is the
maximal length scale at which the information that a flip
has occurred is transmitted through the elastic medium;
hence, it is an upper bound to the size of possible ava-
lanches. Indeed, it compares well with the size of the linear
features seen in Fig. 2(a). As �� (�t) increases, a criss-
cross pattern, analogous to that observed by Maloney and
Robbins [11], gradually builds up due to both the prefer-
ential triggering of flips along preexisting lines and the
random emergence of new ones [see Figs. 2(b) and 2(c)].
Clearly, avalanches persist at finite strain rates.
In order to quantify the importance of these correlations,

we first focus on the macroscopic shear stress �ð� �xyÞ in
steady state. We compute its configurational average ��ð _�Þ
and its variance ��2, for various _� and system sizes. As
shown in Fig. 3 (left), ��ð _�Þ quickly converges towards a
size-independent limit (reached beyond L ’ 40), for which
an excellent empirical fit is �� ¼ 0:74þ 4:87

ffiffiffiffi
_�

p
. We plot

in Fig. 3 (right) the product L2��2. The data collapse for
_� * 4� 10�3 shows that at the higher strain rates, stress
fluctuations reasonably follow the law of large numbers,
hence that the underlying dynamics is only weakly corre-
lated. This collapse, however, becomes increasingly poorer
when _� decreases, indicating the growing importance of
correlations. The spread culminates in the small rate re-

gime, where L2��2 extrapolates nicely to its QS values
(shown in filled symbols), a strong hint that the underlying
dynamics continuously approaches the QS behavior.
However, the fluctuations of such a macroscopic quan-

tity only provide very global information about the dynam-
ics. To better qualify the spatiotemporal correlations, we
turn to another observable which carries more microscopic
information, namely, the transverse (self-)diffusion coeffi-
cient. It is obtained from the space and ensemble average

of the fluctuations �y2 of the transverse displacements
�yi¼yið�0þ��Þ�yið�0Þ. To facilitate comparison with

QS data, we introduce the quantity �y2=2��, which is
plotted versus�� for different system sizes, in Fig. 4 (left).
At very short times (small ��’s), particle motion is ballis-
tic; hence, the curves start with a finite slope (see insert).
After a transient regime extending up to��� 1 they reach

a plateau value, D̂, related to the usual diffusion coefficient

D as D ¼ D̂ _� . It is striking that, for a fixed _�, D̂ is

strongly size dependent. We plot D̂ as a function of L in

FIG. 1. The instantaneous velocity field of a 160� 160 system
sheared at _� ¼ 5� 10�5, at equally spaced times, with �t ¼ 2,
�� ¼ 10�4. We see one zone which grows then disappears and
triggers the flip of a nearby zone. See also a movie [12] with the
same parameters, covering an interval �t ¼ 20.

FIG. 2 (color online). The strain field of a 160� 160 system
sheared at _� ¼ 10�4, for growing strain intervals �� ¼ 1%, 5%,
and 20% (from left to right) from the same initial configuration.
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Fig. 4 (right), for various strain rates. Although the size

dependence is stronger near the QS limit where D̂ðLÞ
becomes nearly linear (see insert), it persists up to the

highest value _� ¼ 10�2, for which D̂ is quasilinear in lnL.

It is surprising that D̂ remains size dependent for _�
values at which stress fluctuations were shown to obey
the law of large numbers, an indication that plastic events
are then uncorrelated. The only way to reconcile these
two observations is to assume that each event induces a
long-range elastic field, which is precisely the case for
Eshelby-like transformations. In our simple shear geome-
try the relevant transformations are purely deviatoric
sources. In an infinite medium, the expression of the dis-
placement field due to such a source located at the origin is

[15] uE ¼ 2a2��0
�

xy
r4
r, with a the source size, and a2��0 its

dipolar strength. For L � a the transverse displacement
fluctuation due to a single flip can then be computed to

leading order as a space average: hu2y;Ei � a4��2
0

2�L2 lnðL=aÞ.
Since each flip releases a macroscopic strain a2��20=L

2 (up

to a prefactor of order 1 which characterizes the local zone
structure), the average number of flips, in steady state,

occurring over a strain range �� is Nfð��Þ ¼
L2��=a2��0. Assuming the flips are uncorrelated, we

thus obtain D̂ ¼ Nfhu2y;Ei=2�� � a2��0
4� lnðL=aÞ. In light

of this result, our data for _� ¼ 10�2 demonstrate that at
high _� the dynamics results from uncorrelated Eshelby

flips. A fit of D̂ðLÞ at _� ¼ 10�2 yields a value of order 1
for a2��0, which is reasonable since we expect a� 4� 5,
and ��0� a few percent.
The growing departure from the lnL scaling at decreas-

ing _� must then be due to the emergence of correlations
between flips. Guided by the observation of quasilinear
avalanches in strain maps, we now try out a model in which
diffusion results from a set of independent events, each of
which is a linear avalanche of length l, oriented at random
along either the x or y axis. In such a picture, the existence
of flip-flip correlations is embodied in the value of l.
We assume the linear density of flips � in an avalanche
to be a constant, and compute the transverse displacement
fluctuations due to a line of homogeneously distributed
flips as h�y2iA ¼ �2

R
l
0

R
l
0 dsds

0Cðrs � rs0 Þ with Cð	rÞ ¼
huy;EðrÞuy;Eðrþ 	rÞi. For j	rj � L, to leading order,

Cð	rÞ � ða4��20=2�L2ÞR1
j	rj=L

dq
q J0ðqÞ, whence h�y2iA �

a4��2
0
�2

2�
l2

L2 lnðL=lÞ. Since the average number of avalanches

over an interval �� is NA ¼ Nf=�l, the resulting diffusion

coefficient is

D̂ � a2��0
4�

�l lnðL=lÞ: (1)

At this stage, l is an unknown function of both _� and L. Yet
we know that (i) l� a at large _�, and (ii) l / L in the QS
limit: our model thus does capture the limiting logarithmic
and quasilinear scaling behaviors.
For further comparison with the data, we seek to com-

plement this model with an estimate of the dependence of l
on _�. Let us recall that each zone receives noise due to
elastic signals propagating away from flips occurring in the
whole system at rateR ¼ L2 _�=a2��0. Each signal carries
directional information and gives rise to a stress jump with
rise time (or autocorrelation time) �� 
�1 � a=cs. Given
a distance l, we distinguish between (i) signals originating
from nearby sources (within r < l) occurring at rate Rl ¼
Rl2=L2, and of amplitude ��0 * �ða2��0=l2Þ, and (ii) a
background noise due to all other sources, of rate R0

l ¼
R�Rl. It is incoherent and isotropic, the sources being
evenly distributed in space, as soon as several far-field
signals overlap at any time (R0

l � ��1). We assume l �
L so that R0

l ’ R. We then make the ansatz that l is the
flip-flip correlation length if the near-field signals consti-
tute a shot-noise which stands out of the incoherent back-
ground. This entails two conditions: (a) near-field signals
must not overlap,Rl & ��1; (b) their amplitude��0 must
be larger than the background stress fluctuations accumu-

lated during �, ��2 � _��ð�2a2��0=l
2Þ. Both lead to a

common estimate for the correlation length:
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FIG. 4. Left: Transverse displacement fluctuations, normalized
as D ¼ h�y2i=2��, as a function of ��, for _� ¼ 10�3 and
system sizes L ¼ 20 (solid line), 40 (dash-dotted), and 80
(dashed). Right: Their plateau value D̂ versus L for strain rates
_� ¼ 10�4, 2� 10�4, 4� 10�4, 8� 10�4, 10�3, 2� 10�3, 4�
10�3, 6� 10�3, 8� 10�3, 10�2. Arrows indicate decreasing _�.
QS values, shown for sizes 10, 20, and 40, are indistinguishable
from lowest strain rate values.

0 0.005 0.01
0.6

0.8

1

1.2

0 0.005 0.01
10

12

14

16

18

20

1e-05 0.0001 0.001 0.01
10

12

14

16

18

20

FIG. 3. For sizes L ¼ 10 (� ), 20 (h), 40 (e), 80 (4 ), 160
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indicated by filled symbols and arrows.

PRL 103, 065501 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

7 AUGUST 2009

065501-3



l �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2��0

_��

s
; (2)

which also guarantees the incoherence of the background
(R0

l ’ R � ��1). Of course, this expression is valid only

for l � L, as l should saturate to its QS plateau value�L,
below a crossover strain rate _�c � a2��0=�L

2. This argu-

ment predicts that the diffusion coefficient D̂ should obey a

scaling of the form D̂
L ¼ fðL ffiffiffiffi

_�
p Þ, with fðxÞ � 1=x for x �

1. We test it using the D̂ð _�Þ data presented in Fig. 5. Not
only is the collapse satisfactory, but the prediction for a�1
slope at high _� fits the data remarkably well (in view of the
numerous simplifying assumptions of our model). The
crossover occurs near L

ffiffiffiffi
_�

p ’ 1, which is compatible
with our expression for _�c since � ’ 0:2 and a2��0 was

found to be of order 1 from the analysis of D̂ðLÞ at _� ¼
10�2. These results nicely support our simple argument
and validate the prediction [Eq. (2)] for the strain-rate
dependence of the avalanche size.

As a side note, let us attempt to estimate the departure
from the yield stress as ��ð _�Þ � ��y � �~� _� , with ~� a

microscopic time. If we take it to be an avalanche duration
�A � lð _�Þ=cs we obtain the right functional behavior,
��ð _�Þ � ��y þ C

ffiffiffiffi
_�

p
, with C � �

cs
ða2��0=�Þ ¼ 13, a quite

decent guess compared to the value�5which fits our data.
To sum up, we have studied plastic flow in a 2D amor-

phous system over a broad range of shear rates. We find
that the flip-flip correlations due to long-range elastic
fields, observed in the QS simulations, persist under dy-
namic conditions. In other words, zone flips are not in
general independent random events, but occur as direc-
tional quasilinear avalanches, whose average size l de-
pends on _�. Below a crossover rate _�c, any finite size
system presents a pseudo-QS regime in which l plateaus
at its QS value l� L, while all flow properties converge to
their QS values. Beyond _�c, lð _�Þ roughly scales as�1=

ffiffiffiffi
_�

p
.

Its crossover value therefore diverges in the large system
size limit. It is only at very large strain rates, beyond at

least _�� 10�2, that correlations become negligible. This is
the only limit in which existing mean-field models—based
upon independent flips activated by an incoherent noise,
modeled as an effective temperature—are justified for
describing steady plastic flow.
Of course, our results pertain to 2D systems and call for

similar 3D numerical simulations. Pending such studies,
we tentatively carry over our ansatz to 3D. It predicts that

avalanches should extend over a length scale lð _�Þ �
að��0= _��Þ1=3. This permits the estimation of the order of
magnitude of avalanche extent for particular classes of
materials. For instance, for atomic or molecular glasses,
�LJ � 10�13 s and a typical maximum strain rate is _� &
1 s�1. Using ��0 � 5% and a� 5 LJ unit length, �1 nm,
we obtain a minimum value for l in the 10 �m range. The
fully decorrelated regime l ! a would then be attained
for completely unrealistically large strain rates _� *
109�10 s�1. We thus claim that, in these systems, at low
temperatures, avalanches should always be relevant.
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