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We present new experimental results on the transition from coherent-phase to random-phase three-wave

interactions in capillary waves under parametric excitation. Above the excitation threshold, coherent wave

harmonics spectrally broaden. An increase in the pumping amplitude increases spectral widths of wave

harmonics and eventually causes a strong decrease in the degree of the three-wave phase coupling. The

results point to the modulation instability of capillary waves, which leads to breaking of continuous waves

into ensembles of short-lived wavelets or envelope solitons, as the reason for the phase randomization of

three-wave interactions.
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Understanding instabilities of waves and nonlinear phe-
nomena which lead to the formation of turbulence is
important in a variety of nonlinear wave systems in plasma,
fluids, solids, nonlinear optics, etc. Capillary waves, which
belong to a short wave branch of the surface waves
(<10 mm), play an important role in the surface wave
physics in the ocean. They are also of interest from a
general point of view as an example of nonlinear strongly
dispersive waves. Capillary waves can interact via a three-
wave interaction process which is possible due to the

decay-type dispersion relation, !k ¼ ð�=�Þ1=2k3=2, where
� is the surface tension coefficient and � is the fluid den-
sity. Such a dispersion allows three-wave resonant condi-
tions for the frequencies and for the wave numbers to be
satisfied simultaneously: ! ¼ !1 þ!2 and k ¼ k1 þ k2.

In the laboratory, capillary waves can be excited para-
metrically in a vertically shaken container [1–4], using
electric fields [5], ultrasonic excitation [6], wave paddles
[7], plungers [8], and other techniques. In some of these
experiments, observations of fully developed broadband
spectra are reported [6,7], while in others (e.g., [4]) dis-
crete spectra are observed. In several experiments both
discrete and continuous spectra are found depending on
the strength of the drive [1,2,8]. The observed complex
wave fields are often referred to as turbulence, and the
shapes of the spectra are compared with the predictions of
weak turbulence theory of capillary waves [9,10]. It should
be noted that weak turbulence theory assumes that inter-
acting waves are weakly nonlinear and that their phases are
almost random [11]. However, the latter assumption has
never been tested in experiments. It is also not clear if the
three-wave processes lead to the spreading of spectral
energy into broadband turbulence in such systems. A large
body of work has also focused on the pattern formation in
capillary waves (e.g., [12–14] for review), a topic which is
not addressed here.

In this Letter we focus on the physics of the formation of
turbulence driven by parametrically excited monochro-
matic capillary waves. We show that the generation of
continuous broadband frequency spectra occurs via non-

linear spectral broadening of discrete harmonics. Such
broadening results from the modulation instability of cap-
illary waves, a four-wave process of sideband generation.
This nonlinear broadening changes the nature of the three-
wave interactions between harmonics from coherent to the
random phase. The phenomenology of the nonlinear har-
monics broadening is similar to those observed during
parametric excitation of the second sound waves in super-
fluid helium He4 [15,16] and in spin waves excited in
ferrites [17].
The experiments are performed in vertically shaken

cylindrical containers (100–200 mm in diameter, 30–
50 mm deep). Above a certain acceleration threshold,
capillary waves on the surface of the liquid (distilled water)

FIG. 1 (color online). (a) Fourier power spectra of the capillary
waves at different accelerations �A ¼ 3g, 17g, 33g, 41g, 65g.
The first harmonic of the parametrically excited wave at f1 ¼
f0=2 ¼ 1:6 kHz and the zero-frequency sideband are shown.
The dashed line corresponds to a sech2 fit to the exponential
spectrum. (b) The same spectrum in the range f ¼ ð0–20Þ kHz
at �A ¼ 65g. (c) Spectral width �f / 1=� as a function of the
harmonic frequency for different accelerations.
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are generated via parametric excitation of the Faraday
waves ([5,18] and also [19] for a review). The surface
perturbations are detected using the reflection of a laser
beam off the water surface, similar to the method described
in [8]. The laser beam of 5 mm diameter is reflected onto a
diffusive screen which is imaged into a photomultiplier
tube and digitized at a 100 kHz sampling rate. The re-
flected light intensity is related to the tilt angler�which is
the gradient of the surface elevation �ðr; tÞ. The time-
varying signal of the photomultiplier tube is proportional
to the fluctuating part of the reflected beam power pðtÞ. In
the reported experiments, a monochromatic excitation in
the range of the shaker frequencies of f0 ¼ 40 to 3500 Hz
is used. This leads to the generation of the main parametri-
cally driven f0=2 subharmonic wave and a large number of
its harmonics fn ¼ nf0=2.

Nonlinear broadening of capillary waves is studied
under high-frequency wave excitation at f0 ¼ 3:2 kHz.
High excitation frequency ensures that the frequency
gaps between adjacent harmonics are substantially larger
than the harmonic spectral widths and no overlapping
occurs. Figure 1 shows the power spectra SðfÞ of the signal
pðtÞ. Spectra are obtained at different vertical accelerations
A in the range �A ¼ 3 to 70g, where �A ¼ A� Athr

denotes acceleration above the threshold of parametric
instability. Close to the threshold, at �A ¼ 3g, a narrow
peak at f1 ¼ 1:6 kHz is observed. This wave generates
over 10 harmonics, as seen in Fig. 1(b). As the acceleration
increases, all harmonics broaden, developing exponential
tails in the power spectrum which can be approximated by
the squared hyperbolic secant function sech2½bðf� fnÞ�.
Here, SðfÞ ¼ FfF

�
f, where Ff is the Fourier transform of

pðtÞ, and � denotes a complex conjugate. As seen in
Fig. 1(a) exponential tails in the spectra extend over 4
orders of magnitude in SðfÞ. The inverse Fourier transform
of Ff ¼ sech½bðf� fnÞ� is sðtÞ ¼ ð�=bÞsechð�2=btÞeifnt,
which, in the time domain, describes a harmonic wave of
the frequency fn modulated by a sech envelope of width
� ¼ b=�2. The spectral broadening �f / 1=� of the wave
harmonic fn increases approximately linear with the in-
crease in �A. The increased input energy leads to spectral
broadening, but does not increase the harmonic ampli-
tudes, similar to other parametric systems [15,17]. The
spectral width also increases as a function of the harmonic
number at fixed �A, as shown in Fig. 1(c). As the wave
spectra broaden, a zero-frequency sideband develops
[Fig. 1(a)] whose width also increases with the increase
in the drive.

The development of the f ¼ 0 sideband indicates that
the waves are amplitude modulated. Figure 2 shows the
waveforms of the band-pass filtered signals of the spec-
trally broadened first subharmonic, f ¼ ð1:6� 0:2Þ kHz
corresponding to the spectra of Fig. 1. The amplitude
modulation of the waves is present even very close to the
threshold of parametric excitation. As the acceleration is
increased, the modulation increases showing bursts of dif-

ferent amplitudes and durations [Figs. 2(a), 2(c), and 2(e)].
The shape of these modulation envelopes is well approxi-
mated by a hyperbolic secant, sðtÞ ¼ sechð�2=btÞ. This
fit is illustrated as a dashed line in the right column of
Figs. 2(b), 2(d), and 2(f), which shows zoomed-in wave-
forms of the corresponding signals from the left column.
The modulated wave appears as a sequence of the sech-
modulated wavelets of various amplitudes and widths.
Thus, the frequency-domain and the time-domain repre-
sentations are consistent with the amplitude modulation of
the wave harmonics.
The observed amplitude modulation of capillary waves

is likely to result from the modulation instability whose
linear theory was presented over 40 years ago [20] but has
not been studied in any detail, in contrast to the modulation
instability of the surface gravity waves, or the Benjamin-
Feir instability [21]. The Lighthill criterion of the modu-
lation instability, ð@!=@jaj2Þð@2!k=@k

2Þ< 0, is satisfied
for capillary waves as well as for gravity waves. Here, a is
the wave amplitude, and! ¼ !k½1� ðkaÞ2=16� includes a
nonlinear frequency correction [20]. A well-known exact
solution of the nonlinear Schrödinger equation which de-
scribes the evolution of the modulationally unstable waves
[20] is the hyperbolic secant envelope soliton, found in
many physical systems including the gravity surface waves
[22]. The above observation of the sech-modulated wave-
lets points to a similar phenomenon in capillary waves.
The nonlinear spectral broadening of parametrically

excited waves described above has also been reported in
the second sound waves in liquid helium He4 [15] and in
spin waves excited in ferrites [17]. In both systems, above
the threshold of the parametric excitation, waves develop

FIG. 2 (color online). Waveforms of the bandpass-filtered sig-
nals (f ¼ 1:6� 0:2 kHz) of the first (sub)harmonic measured at
different acceleration levels: (a, b) �A ¼ 3g; (c, d) �A ¼ 33g;
(e, f) �A ¼ 65g. Dashed lines in (b, d, f) correspond to the
sechðtÞ fit of the wavelet envelopes.
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exponential frequency spectra. Similar to our result illus-
trated in Fig. 2, it was found that the spectral width and
the modulation frequency of the second sound wave in-
crease with the drive (the amplitude of the first sound
wave) [15]. Theoretical interpretation of the spectral
broadening in these experiments is given in terms of the
four-wave scattering [17,23], or a two-step three-wave
interaction process [24].

Next we show results on the low-frequency wave exci-
tation. In this case, the spectral broadening of the wave
harmonics can lead to their overlap. Figure 3(a) shows a
r� power spectrum of the waves excited at f0 ¼ 40 Hz,
f1 ¼ 20 Hz at the acceleration of �A ¼ 2:5g. More than
n ¼ 50 harmonics are observed in this case which extend
over two decades in f. A spectrally broadened zero-
frequency sideband is also seen. When the acceleration is
increased to �A ¼ 15g, a continuous broadband spectrum
is observed [Fig. 3(b)]. Higher acceleration, beyond �A ¼
15g, leads to further steepening of the surface ripple and to
the formation of water droplets.

As mentioned above, the dispersion relation of capillary
waves allows three-wave interactions. To characterize a
degree of the phase coupling in discrete and continuous
spectra shown in Fig. 3, we compute the autobicoherence,
or normalized, bispectrum [25]. The autobispectrum of the
reflected laser power pðtÞ is defined as Bðf1; f2Þ ¼
hFfF

�
f1
F�
f2
i ¼ hAf1Af2Afe

�f��f1
��f2 i, where f ¼

f1 þ f2. Here angular brackets denote the ensemble aver-
aging. If the phases of waves at f1, f2, and f are statisti-
cally random, the average value of the bispectrum is zero.
The autobicoherence is the squared autobispectrum nor-
malized by the auto power spectra of the interacting waves:

b2fðf1; f2Þ ¼
jhFfF

�
f1
F�
f2
ij2

hFfF
�
fihFf1F

�
f1
ihFf2F

�
f2
i : (1)

It changes between 0 (no phase coupling) and 1 (coherent
waves) and reflects the strength of the three-wave interac-
tions. We also compute the summed bicoherence, SBðfÞ¼
P

f¼f1þf2
b2fðf1;f2Þ. This quantity gives a measure of the

total phase coupling to the frequency f from all frequen-
cies f1 and f2 in the spectrum satisfying f ¼ f1 þ f2.

Figure 4 shows the autobicoherence b2f and the summed

bicoherence SBðfÞ corresponding to the spectra in Fig. 3.
The degree of the phase coupling between the discrete
harmonics of Fig. 3(a) is very high with b2f ¼ ð0:5–0:9Þ
as shown in Fig. 4(a). This is indicative of coherent-phase
interactions. In the broadband turbulence case of Fig. 3(b),
the level of the bicoherence drops below 0.2 at all frequen-
cies [Fig. 4(b)], even at the strongest harmonics of the
pumping wave. However, the bicoherence of the contin-
uum increases, as seen in the calculated summed bicoher-
ence by comparing Figs. 4(c) and 4(d). This suggests that at
the increased excitation amplitude a large number of waves
participate in three-wave interactions which have almost
random phases.
Similarly to the case of high-frequency excitation, the

wave harmonics at low-frequency excitation show sech
spectra. Their spectral width also increases with the in-
crease in acceleration and with the harmonic number
[Fig. 5(a)]. The increase in the spectral width results
from the decrease in the average width � of the wavelet
envelopes.
As the acceleration is gradually increased, higher har-

monics start overlapping, such that the continuous spec-
trum is first generated at higher frequencies. This is shown
in the spectrum of Fig. 5(b) obtained at the intermediate
acceleration of �A ¼ 6g. In this spectrum the wave con-
tinuum is observed in the frequency range f > 350 Hz.
However the wave harmonics in the range f > fc ’
120 Hz already lose their coherence [Fig. 5(c)]. The

FIG. 3. (a) Discrete and (b) continuous spectra of capillary
waves driven by the parametrically excited wave at f1 ¼ f0=2 ¼
20 Hz. The rms acceleration is (a) �A ¼ 2:5g and (b) �A ¼
15g.

FIG. 4 (color online). (a, b) The autobicoherence and (c, d) the
summed bicoherence of the reflected light intensity computed
for the conditions of (a, c) the discrete spectrum of Fig. 3(a), and
(b, d) the continuous spectrum of Fig. 3(b).
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summed bicoherence is reduced to the random-phase level
in the range f > fc. The data of Fig. 5 (vertical lines)
suggest that the transition from coherent to random phases
occurs at f1� & 1, where f1 ¼ 20 Hz is the frequency of
the first parametric subharmonic and � � 0:04 s is derived
from the harmonic spectral width at f ¼ fc. This can be
explained as follows. The degree of coherence in three-
wave interactions depends on the nonlinear interaction
time between waves in the wave triads. Thus it is defined
by the time width � of the shortest-lived wave (in our
system the highest frequency) in the resonant triad.
When this width becomes shorter than the period T ¼
1=f1 of the lowest frequency harmonic, at �=T < 1, the
bicoherence is reduced.

The experiments show that gradual development of the
wave continuum occurs due to the spectral broadening of
harmonics. Whether or not the Kolmogorov-type cascade
via three-wave interactions [9,10] transfers energy within
the spectrum cannot be decided solely based on the spec-
trum shape, as is often done. To further investigate this, one
would need to analyze the wave kinetic equation using
experimentally measured wave fields, similar to the
method described in [26].

Summarizing, we have shown that parametrically ex-
cited capillary waves on the water surface become spec-
trally broadened. The frequency spectra of the wave
harmonics show exponential tails and are well approxi-
mated by the sechðbfÞ fit. The increase in nonlinear broad-
ening with the increase in the drive is linked to the
development of the modulation instability. In the time
domain, the instability leads to breaking of continuous
waves into sech-modulated wavelets or envelope solitons.
A decrease in the average width of the wavelet envelopes
eventually leads to the reduction in the nonlinear interac-

tion time within resonant triads and to the drop in the
degree of phase coupling between three waves.
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