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Wave Phenomena Group, Department of Electronic Engineering, Polytechnic University of Valencia,
C/camino de vera s.n., E-46022 Valencia, Spain

(Received 6 June 2009; revised manuscript received 3 July 2009; published 7 August 2009)

We demonstrate that metamaterials with anisotropic properties can be used to develop a new class of

periodic structures that has been named radial wave crystals. They can be sonic or photonic, and wave

propagation along the radial directions is obtained through Bloch states like in usual sonic or photonic

crystals. The band structure of the proposed structures can be tailored in a large amount to get exciting

novel wave phenomena. For example, it is shown that acoustical cavities based on radial sonic crystals can

be employed as passive devices for beam forming or dynamically orientated antennas for sound

localization.
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Metamaterials are composites made of subwavelength
units whose macroscopic properties are controlled by the
microdistributed units rather than the constituent materials.
For example, acoustic metamaterials made of units with
embedded resonances show amazing properties such as
negative dynamical mass and/or negative bulk modulus
[1]. However, these local-resonant based metamaterials
present a drawback: Their properties are shown only into
the narrow frequency region where the resonances are
excited. On the other hand, nonresonant based acoustic
metamaterials also exhibit unusual acoustical properties
such as anisotropic mass density [2]. This property is
obtained by using sonic crystals (SCs), which are artificial
structures made of periodic distributions of sound scatter-
ers in a gas or a fluid. The unusual acousticlike behavior of
these microstructured systems appears for any frequency
below a certain cutoff frequency defining their behavior as
homogeneous materials [3].

The rich physical phenomena associated to the propa-
gation of physical waves through periodic distributions of
their corresponding scatterers are embedded in the band
structure !ðKÞ, which gives information about the fre-
quencies ! available for propagation for a given wave
vector K. Band structures have been studied for a wide
variety of waves and crystals, such as electronic waves in
semiconductors, electromagnetic (EM) waves in photonic
crystals, or acoustic waves in sonic and phononic crystals.
A common feature of the different type of crystals is the
spatial periodicity of material distribution, which is defined
by the lattice vectors Rn put in rectangular coordinates.
Radially periodic structures have been scarcely studied.
For example, structures referred to as ‘‘circular photonic
crystals’’ have been studied by Horiuchi and co-workers
[4], but their properties have not been analyzed in the
framework of Bloch’s theorem due to the fact that the
associated wave equations in polar or spherical coordinates
are not invariant under translations.

In this Letter, we demonstrate that anisotropic metama-
terials allow the introduction of new radially periodic
structures in two dimensions (2D) as well as in three
dimensions (3D). These new structures have been named
radial wave crystals (RWCs) because they can be defined
either in the realm of EM waves as well as in the realm of
acoustic waves. For simplification purposes, crystals in 2D
are those mainly discussed here, and numerical results are
reported for the case of acoustic waves, the associated
systems being called radial sonic crystals (RSCs).
However, we will also comment how the results obtained
with RSCs can be easily extended to EM waves in 2D by
introducing ‘‘radial photonic crystals’’ and to both types of
waves in 3D.
Let us start by considering a SC in which the mass

density �ðrÞ and bulk modulus BðrÞ are both radially
dependent. Let us also assume that the pressure field at
an arbitrary point of the 2D space ðr; �Þ takes the form
Pðr; �Þ ¼ P

qPqðrÞeiq�. After factorization, the radial part

of the acoustic wave equation can be cast as

HqPqðrÞ ¼ !2PqðrÞ; (1)

where

Hq ¼ �BðrÞ
r

@

@r

r

�ðrÞ
@

@r
þ q2

BðrÞ
r2�ðrÞ : (2)

Note that Hq would be invariant under translations of the

form r ! rþ nd (n being an integer), only if the coeffi-
cients of the partial derivatives were periodic with period-
icity d. Unfortunately, such a condition cannot be
accomplished by any choice of �ðrÞ and BðrÞ because the
terms r=�ðrÞ and r�ðrÞ cannot be made simultaneously
periodic.
By considering acoustic metamaterials with a tensorial

dynamical mass density, a generalized radial wave equa-
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tion can be introduced:
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PqðrÞ¼!2PqðrÞ; (3)

where �rðrÞ and ��ðrÞ are the components of the mass
density tensor. The new differential operator can now be
made invariant under translations since the coefficients
r=�rðrÞ, BðrÞ=r, and r��ðrÞ can be made simultaneously
periodic. Now Bloch’s theorem can be applied to obtain a
radial band structure defined by a relationship of the form
! ¼ !ðKÞ. The previous conditions on the acoustic pa-
rameters define the so-called ‘‘radial sonic crystal.’’

The simplest example of RSCs in 2D consists of two
alternating metamaterials a and b with constant thick-
nesses da and db along the radial direction. Let us intro-
duce the vector XðrÞ � ð�rðrÞ; ��1

� ðrÞ; BðrÞÞ and also

consider that the acoustic parameters are

X ðrÞ ¼
�
rX̂a if ðn� 1Þd < r < ðn� 1Þdþ da;
rX̂b if ðn� 1Þdþ da < r < nd;

(4)

where d ¼ da þ db, n is an integer that takes values n ¼
1; 2; . . . ;1, and X̂i (for i ¼ a; b) are vectors whose com-

ponents are real numbers giving the slope of the linearly

dependent acoustic parameters, i.e., X̂i ¼ ð�̂ir; �̂
�1
i� ; B̂iÞ.

Figure 1(a) plots the radially dependent acoustic
parameters for a RSC made of two metamaterials a

and b with values X̂a ¼ ð2:0; 1:25; 3:0Þ and X̂b ¼
ð1:0; 1:67; 1:5Þ, respectively.
By introducing X̂ðrÞ in Eq. (3), we arrive at the wave

equations of the respective 2D homogeneous systems:

@2PqðrÞ
@r2

þ
�
!2 �̂ir

B̂i

� q2
�̂ir

�̂i�

�
PqðrÞ ¼ 0; i ¼ a; b:

(5)

These equations have plane-wave solutions with a disper-
sion relation given by

k2iq ¼ !2 �̂ir

B̂i

� q2
�̂ir

�̂i�

; i ¼ a; b: (6)

The acoustic band structure of RSCs with parameters in
(4) is easily obtained by following a method similar to that
already employed for multilayered systems [5]. The final
expression is

cosKd ¼ coskaqda coskbqdb

� 1

2

�
�̂arkbq
�̂brkaq

þ �̂brkaq
�̂arkbq

�
sinkaqda sinkbqdb; (7)

where K is the Bloch wave number.
Figure 2(a) plots the acoustic band structure for the

RSCs with parameters described in Fig. 1(a). Curves of
the same color define branches with equal q values. Note

FIG. 1 (color). (a) Acoustic parameters of a radial sonic crys-
tal consisting of two alternating anisotropic metamaterials
a and b, with parameters ð�ar; �

�1
a� ; BaÞ ¼ ð2r; 1:25r; 3rÞ and

ð�br; �
�1
b� ; BbÞ ¼ ðr; 1:67r; 1:5rÞ, respectively. They are depicted

as a function of the radial coordinate normalized to d, the lattice
period. (b) A radial-sonic-crystal shell whose dimension and
parameters’ values are defined by the vertical dashed lines shown
in (a). The color scale corresponds to values taken by �r.

FIG. 2 (color). (a) Acoustic band structure of a radial sonic
crystal with parameters depicted in Fig. 1(a). Only the dispersion
relations corresponding to the modes q ¼ 0, 1, and 3 are shown.
The modes q ¼ 0 (black lines) follow a typical 1D band struc-
ture. q ¼ 1 modes (red lines), q ¼ 2 modes (green lines), and
q ¼ 3 modes (blue lines) present a low band gap from ! ¼ 0 to
some ! ¼ q!cq (see text). (b) Scattering transmission ampli-

tude Tq as a function of the reduced frequency for the ten-layer

radial-sonic-crystal shell shown in Fig. 1(b).
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that branches with q � 0 always have a low frequency
band gap. Let us remark that the chosen parameters created
a band structure such that the 1st branch with q ¼ 2 is
totally included in the first band gap of branch q ¼ 0.
Besides, note that the 1st branch of q ¼ 1 contains modes
that are also in the first band gap of branch q ¼ 0.

Infinite RSCs are not feasible in practical applications;
finite structures have to be used instead. Particularly, we
analyze here the finite RSC defined by the vertical dashed
lines in Fig. 1(a); it is a ten-layer RSC shell that occupies
the region 2d � r � 12d. The medium at the cavity de-
fined by the shell (r < 2d) and the medium outside the
shell (r > 2d) are considered the same homogeneous and
isotropic acoustic medium.

First, let us analyze the behavior of the RSC shell when a
sound source P0 is put inside the cavity defined by the shell
[see Fig. 1(b)]. In this region, the general expression for the
exciting field is

P0 ¼ X
q

A0
qHqðk0rÞeiq�; (8)

where Hq are the Hankel functions, k0 ¼ !=c0, and c0 is

the speed of sound inside the cavity.
As a response to the exciting field, a reflected field Pr

will appear inside the cavity (r < 2d):

Prðr; �Þ ¼ X
q

A0
qRqJqðk0rÞeiq�; (9)

where Jq are the Bessel functions. The transmitted field Pt

will appear at the region outside the shell (r > 12d):

Ptðr; �Þ ¼ X
q

A0
qTqHqðk0rÞeiq�; (10)

where coefficients Tq give information about the interac-

tion between acoustic waves and the RSC. Coefficients Tq

of the RSC shell under study are calculated by a method
slightly modified from that reported by Cai and a co-
worker [6,7]. Figure 2(b) shows the results plotted in the
logarithmic scale. Note that coefficients Tq are very small

at the corresponding band gap regions. Also note that
Fabry-Perot-like oscillations appear in frequency regions
where the band structure is almost linear. The peaks with
frequencies in the band gaps indicate the existence of
localized states inside the cavity shell.

Coefficients Tq are also plotted in Fig. 3(a) in a linear

scale and are compared with those calculated for the case
of a ‘‘homogeneous multilayer’’ (HML) that appears in
Fig. 3(b). The HML shell is made of two alternating layers
of homogeneous and isotropic material a and b with the
same thicknesses as those in the RSC. Results for the HML
shell show that a band gap, corresponding to Bragg reflec-
tion, is also present, but this band gap is the same for all of
the q modes. It is possible to observe that Fabry-Perot
oscillations also appear, but they are strongly mixed with
all of the q modes. Instead, for the RSC shell it is possible
to see that the oscillations have high values of Tq at their

peak maximum and the peaks are also very thin, both
features that make the quality factor Q of the resonances
be huge. It is also remarkable that there are frequency
regions where modes of only a certain q are present; in
these regions the cavity field would oscillate like a q pole.
From this comparison it is concluded that the RSC shell is a
‘‘highly ordered’’ system that can be used to produce
interesting physical phenomena as shown below.
RSC shells can be used like q-pole resonators. For

example, Fig. 3(b) shows that at !d=2�c0 ¼ 0:608 (black
dot) there is a quadrupolelike resonance (q ¼ 2mode) that
has a calculated quality factor Q ¼ !0=�! � 2000.
Then, if a 2D punctual source of the type P � H0ðkrÞ is
placed inside the cavity slightly separated from the origin,
the field inside the cavity is

P0 � X
q

A0
qHqðk0rÞeiq�: (11)

Because of the quadrupolelike resonance, outside the cav-
ity the field is

Pt � T2H2ðk0Þ cosð2�Þ: (12)

The corresponding field distribution appears in Fig. 4(a),
which shows how a 0-pole (monopole) source generates a
2-pole (quadrupole) oscillation. This is an example of a
RSC shell acting as a passive device for beam forming.
A remarkable phenomenon appears when the q-pole

resonances are excited by sound sources outside the RSC
shell. In Fig. 4(b) is depicted the field map generated by a
punctual omnidirectional (monopole) sound source placed
outside two identical RSC shells and that oscillates at a
frequency !d=2�c0 ¼ 0:414. This frequency corresponds

FIG. 3 (color). (a) Transmission coefficients for the radial-
sonic-crystal shell described in Fig. 1(b). (b) Coefficients for a
multilayer cylindrical shell made of two homogeneous and
isotropic layers with the same thicknesses and constant parame-
ters ð�a; BaÞ ¼ ð2:0; 3:0Þ and ð�b; BbÞ ¼ ð1:0; 1:5Þ, respectively.
Note that Fabry-Perot resonances of the radial-sonic-crystal shell
are thinner and higher than that in the homogeneous multilayer
shell.
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to a resonance of the q ¼ 1 mode marked with a black dot
in Fig. 3(b); this dipolelike mode has a Q factor close to
900. It is observed how the localized dipolelike modes are
excited by the source outside the RSC shells. Note that the
dipoles are oriented in the direction to the punctual source,
which makes these systems potentially useful as dynami-
cally orientable antennas for sound source detectors.

The Q factors and the resonant phenomena reported
above are associated to Fabry-Perot-like resonances. Our
numerical simulations also indicate the existence of modes
with frequencies in the band gaps whose Q factors are
much larger than that of Fabry-Perot-like modes. The
analysis of these modes strongly localized inside the cavity
defined by the RSC shell is out of the scope of the present
short Letter and will be reported elsewhere.

RSCs can be also proposed in 3D, where the acoustic
wave equation for radially symmetric problems is

�
�BðrÞ

r2
@

@r

r2

�rðrÞ
@

@r
þ lðlþ1Þ BðrÞ

r2��ðrÞ
�
Pln¼!2Pln; (13)

where it has been assumed that �� ¼ ��. Now, to obtain

periodic coefficients, the quantities r2=�rðrÞ, BðrÞ=r2, and
��ðrÞ must be simultaneously periodic. From this point

onwards, the same procedure already reported for the 2D
case applies.
For EM waves, radial photonic crystals can be also

proposed in 2D and 3D. In 2D, the governing wave equa-
tion can be decoupled in TM and TE modes, where the z
component of the corresponding field modifies Eq. (3), in
which the components ð�r; ��; BÞ are replaced by
ð��;�r; "

�1
z Þ for the TE modes and by ð"�; "r; ��1

z Þ for
the TMmodes. Thus the periodic conditions derived for the
2D acoustic case can be applied for the EM case with the
corresponding change of variables.
In 3D there is not an equivalence between the acoustic

and the EM wave equations. For this case it can be shown
that the wave equation is

�
� 1

p�q�

@

@r

1

p�

@

@r
p� þ lðlþ 1Þ 1

q�prr
2

�
c ¼ !2c ;

(14)

where ðpr; p�; qr; q�Þ are ð"r; "�;�r; ��Þ for TE modes

and ð�r;��; "r; "�Þ for TM modes. Now the requirements

of periodicity applies to magnitudes "�ðrÞ, ��ðrÞ, and
r2"rðrÞ for the case of TE modes and to ��ðrÞ, "�ðrÞ,
and r2�rðrÞ for TM modes.
The parameters required for building the proposed

RWCs are not available by any materials existing in nature.
However, they can be engineered by using the metamate-
rial concept. For example, we have demonstrated that mass
anisotropy can be made feasible by using sonic crystals
based on nonsymmetric lattices [2,8]. For EM it has been
recently demonstrated that tapered waveguides can be used
to develop anisotropic EM metamaterials [9].
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FIG. 4 (color). (a) Pressure field generated by a punctual sound
source placed inside the cavity RSC shell, at a position r � 0.
The source oscillates at !d=2�c ¼ 0:608, which corresponds to
a quadrupolelike resonance. (b) Pressure field generated by a
punctual sound source placed at the position ð�1:5; 1:5Þ outside
two RSC shells. The frequency of the exciting field is
!d=2�c ¼ 0:414, which corresponds to a dipolelike resonance
(q ¼ 1) of the RSC shell. Note how the dipolelike fields are
orientated along the direction pointing to the sound source.
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