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We measure the complex scattering amplitudes of a flat microwave cavity (a ‘‘chaotic billiard’’). Time-

reversal (T ) invariance is partially broken by a magnetized ferrite placed within the cavity. We extend the

random-matrix approach to T violation in scattering, determine the parameters from some properties of

the scattering amplitudes, and successfully predict others. Our work constitutes the most precise test of the

random-matrix theoretical approach to T violation so far available.
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We measure the effect of partial violation of time-
reversal (T ) invariance on the excitation functions of a flat
microwave cavity induced by a magnetized ferrite placed
within the cavity. The classical dynamics of a point particle
moving freely within the cavity and elastically reflected by
the walls is chaotic. The generic statistical properties of the
eigenvalues and eigenfunctions of the analogous quantum
system are, therefore, expected to follow random-matrix
theory (RMT) predictions [1], which provide a universal
description. In particular, RMT yields analytical expres-
sions for correlation functions of scattering amplitudes [2]
that can be generalized to include T violation. Although
widely used (to discover signatures of T violation in
compound-nucleus reactions [3] in the Ericson regime
[4], to describe electron transport through mesoscopic
samples in the presence of a magnetic field [5], and in
ultrasound transmission in rotational flows [6]), we expose
that generic model for T violation, to the best of our
knowledge, for the first time to a detailed experimental test.

Our aim is not a detailed dynamical modeling of the
properties of the cavity. We determine the parameters of
the RMTexpressions from fits to some of the data. We then
test the RMTapproach by using it to predict other data, and
by subjecting our fits to a thorough statistical test. All of
this is in the spirit of a generic RMT approach since a
dynamical calculation of the relevant parameters is pos-
sible only for certain chaotic quantum systems, if, e.g., the
semiclassical approximation can be used [7]. We use that
approximation only to determine the average level density,
and to estimate the range of validity of RMT in terms of the
shortest periodic orbit.

Microwave cavities have been used before to study the
effect of T violation on the eigenvalues [8,9] and on the
eigenfunctions [10]. Here we study fluctuations of the
scattering amplitudes versus microwave frequency in a
regime, where the average resonance spacing d is smaller
or of the order of the resonance width �.

Experiment.—The flat copper microwave resonator has
the shape of a tilted stadium [11] (see Fig. 1) and a height
of 5 mm. The frequency f ranges from 1 to 25 GHz, where
only one vertical mode of the electric field strength is
excited. The Helmholtz equation is then mathematically
equivalent to the Schrödinger equation of the two-
dimensional quantum billiard [12]. An Agilent PNA-L
N5230Avector network analyzer (VNA) coupled rf energy
via one of two antennas labeled 1 and 2 into the resonator
and determined magnitude and phase of the transmitted
(reflected) signal at the other (same) antenna in relation to
the input signal and, thus, the elements SabðfÞ with a; b ¼
1, 2 of the complex-valued 2� 2 scattering matrix.
Distorting effects of the connecting coaxial cables were
removed by calibration. We measured the elements of SðfÞ
at a resolution of 100 kHz. To improve the statistical
significance of the data set, an additional scatterer (an
iron disc of 20 mm diameter) was placed within the cavity.
It could be freely moved and allowed the measurement of
statistically independent spectra, so-called ‘‘realizations.’’
Time-reversal invariance is violated [13] by a ferrite

cylinder (4�MS ¼ 1859 Oe, �H ¼ 17:5 Oe, courtesy of
AFT Materials GmbH, Backnang, Germany) of 4 mm
diameter and 5 mm height. The cylinder was placed inside
the resonator and magnetized by an external magnetic field
B of two NdFeB magnets from outside. Field strengths of
up to 360 mT could be attained. Here we focus on the

FIG. 1. The tilted-stadium billiard (schematic). The two anten-
nas 1, 2 connect the resonator to the VNA. The ferrite is fixed,
the scatterer can be moved freely.
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results at B ¼ 190 mT as there the effects are most clearly
visible. The spins within the ferrite precess collectively
with their Larmor frequency about the external field. The rf
magnetic fields of the resonator modes are, in general,
elliptically polarized and couple to the spins of the ferrite.
The coupling depends on the rotational direction of the rf
field. An interchange of input and output channels changes
the rotational direction and thus the coupling. Figure 2
demonstrates that reciprocity, defined by S12ðfÞ ¼ S21ðfÞ
and implied by T invariance, is violated. As a measure of
the strength ofT violation, we define the cross-correlation
coefficient Ccrossð� ¼ 0Þ where

Ccrossð�Þ ¼ Re½hS12ðfÞS�21ðfþ �Þi�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihjS12ðfÞj2ihjS21ðfÞj2i

p
: (1)

IfT invariance holds, we have Ccrossð0Þ ¼ 1while S12 and
S21 are uncorrelated and thus Ccrossð0Þ ¼ 0 if it is com-
pletely broken. The average h�i over the data is taken in
frequency windows of width 1 GHz and over 6 realizations.
The upper panel of Fig. 3 shows Ccrossð0Þ for the different
frequencywindows. It depends strongly on f althoughcom-
plete violation of T is never attained. At 5–7 GHz the
Larmor frequency of the ferrite matches the rf frequency,
resulting in Ccrossð0Þ � 0:8. Surprisingly, around 15 GHz
the effects of T violation are strongest, Ccrossð0Þ � 0:5. A
third minimum is observed at about 24 GHz.

Analysis.—We analyze the data with a scattering ap-
proach developed in the context of compound-nucleus
reactions [14]. The matrix for the scattering from antenna
b to antenna a is written as SabðfÞ ¼ �ab � 2�i½Wyðf�
HeffÞ�1W�ab. The matrixW�a is rectangular and describes

the coupling of the N resonant states � in the cavity with
the antennas a ¼ 1, 2. We assume that T violation is due
to the ferrite only. ThenW�a is real. The resonances in the

cavity are modeled by Heff ¼ H � i� ~W ~Wy. Here H is the

Hamiltonian of the closed resonator. The elements of the
real matrix ~W�c are equal to those ofW�c for c ¼ 1, 2. As

done successfully before [15,16], Ohmic absorption of the
microwaves in the walls of the cavity and the ferrite is
mimicked [17] by additional fictitious weakly coupled
channels c. As the billiard dynamics is chaotic [1], we
model H by an ensemble of N-dimensional random matri-

ces, which are written as the sum of two parts [18,19],H ¼
Hs þ ið��= ffiffiffiffi

N
p ÞHa. The real, symmetric, and T invariant

matrixHs is taken from the Gaussian orthogonal ensemble
(GOE) while the real, antisymmetric matrix Ha with
Gaussian-distributed matrix elements models the

T breaking part of H. For ��=
ffiffiffiffi

N
p ¼ 1 the Hamiltonian

H belongs to the Gaussian unitary ensemble (GUE) sys-
tems with complete T breaking. However, for N ! 1, T
invariance is significantly broken already when the dimen-
sionless parameter � is close to unity [20]. In the same limit
Ccrossð0Þ in Eq. (1) can be expressed in terms of a threefold
integral involving �. For the derivation we extended the
method of Ref. [21] where the ensemble average of jSabj2
was computed as function of �. With the notations

t¼�2�2; R¼ 4ðxþ x1Þðxþ x2Þ;
U¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x1ð1þ x1Þx2ð1þ x2Þ
q

;

F ¼ 4xð1� xÞ; E� ¼ 1� expð�2tF Þ; �¼ 1� 2x;

�i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ x1Þð1þ x2Þþ x1x2 �ð�1ÞiU
q

;

Gi ¼ �2
i � 1; i¼ 1;2 (2)

the cross-correlation coefficient Ccrossð0Þ is obtained by
setting � ¼ 0, � ¼ �1, and a, b ¼ 1, 2 in the function

F�
abð�jTa;Tb;�abs;�Þ¼1
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FIG. 2. Transmission spectra for B ¼ 190 mT in the range 16–
17 GHz. The amplitudes and phases of S12 (solid) and S21
(dashed) are seen to differ.
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FIG. 3. Experimental values of Ccrossð0Þ (upper panel) from
Eq. (1) and the parameter � for T violation deduced from these
(lower panel) with the help of Eq. (3). The error bars indicate the
rms variation of Ccrossð0Þ over the 6 realizations.
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The integration measure �ðx; x1; x2Þ and the function
Jabðx; x1; x2Þ are given in Ref. [2], while the functions
Kabð�; �1; �2jTa; Tb; �Þ and Labð�; �1; �2jTa; Tb; �Þ can
be read off Eq. (2) of Ref. [22]. We checked our analytic
results by numerical RMT simulations. The parameters of
Eq. (3) are d; �, the transmission coefficients Ta ¼ 1�
jhSaaij2 for a ¼ 1, 2, and the sum �abs of 300 transmission
coefficients that model the Ohmic losses [16,17].

For a typical set T1, T2, �abs, Fig. 4 shows Ccrossð0Þ ver-
sus �. Within the frequency range 1–25 GHz, Ccrossð0Þ de-
pends very weakly on T1, T2, �abs, and Fig. 4 can be taken
to be universal. For each data point shown in the upper
panel of Fig. 3 the corresponding value of � was read off
Fig. 4 and the result is shown in the lower panel of Fig. 3.
The strength � of T breaking varies from zero to 0.3.
Numerical calculations show that for � ¼ 0:3 the spectral
fluctuations of the Hamiltonian H almost coincide with
those of the GUE [23]. We also found that for � ¼ 0:4 they
do not differ significantly from those presented in Ref. [8],
where the conclusion was drawn, that complete T break-
ing is achieved, whereas the value of Ccrossð0Þ is still far
from zero. This shows that Ccrossð0Þ is a particularly suit-
able measure of the strength � of T violation.

Autocorrelation function.—Since Ccrossð0Þ depends only
weakly on T1, T2, and �abs, we used the auto-
correlation function Cabð�Þ for their more precise determi-
nation, especially of �abs. The function

Cabð�Þ ¼ hSabðfÞS�abðfþ �Þi � jhSabðfÞij2 (4)

was calculated with the method of Ref. [21]
as a function of T1, T2, �abs, �, and d and is obtained
from Eq. (3) by setting � ¼ þ1. It interpolates between
the well-known results for orthogonal symmetry [2] (full
T invariance) and for unitary symmetry [24] (complete
violation of T invariance). The mean level spacing d was
computed from theWeyl formula. The Fourier transform of
Cabð�Þwas then fitted to the data as in Ref. [16]. As starting
points we used the values of T1 and T2 from the measured
values of SaaðfÞ and of � determined from Ccrossð0Þ. For
each of the 6 realizations the spectra of SabðfÞwere divided
into intervals �f of 1 GHz length. In each interval the

Fourier transform ~CabðtkÞ of the autocorrelation function

(4) was calculated for values of tk between 5 and 200 ns.
The lower limit is determined by the length of the shortest
periodic orbit in the classical billiard [7]; for smaller values
of tk the Fourier coefficients are nongeneric. At tk �
200 ns the values of ~CabðtkÞ have decayed over more
than 3 orders of magnitude, and noise limits the analysis.
The time resolution was 1=�f ¼ 1 ns. We measured the
four excitation functions SabðfÞ taking a, b ¼ 1, 2 yielding
a total of 4800 Fourier coefficients for each interval. For
f > 10 GHz the fitted values for T1 and T2 differ by not
more than 7% from the initial ones. For smaller f the
intervals of 1 GHz width comprise only few resonances.
The spread of the data is large, see the left panel of Fig. 5.
Going to the time domain is useful since the SabðfÞ are
correlated for neighboring f whereas the correlations are
removed in the ratios of the experimental and the fitted

values for ~CabðtkÞ. The latter are stationary and fluctuate
about unity. For each realization the parameters �abs and �
were obtained by fitting the analytical expression for
~CabðtkÞ to the experimental results. The values of � deter-
mined from these fits agree with the ones found from the
cross-correlation coefficient. To reduce the spread we
combined the data from all realizations within a fixed
frequency interval. The result was analyzed with a
goodness-of-fit (GOF) test (see Ref. [16]) that distin-
guishes between full, partial, and no violation of T . We
defined a confidence limit such that the GOF test errone-
ously rejects a valid theoretical description of the data with
a probability of 10%. With this confidence limit the test

rejects the fitted expressions for ~CabðtkÞ in only 1 out of the
24 available frequency windows or in 4.2% of the tests. The
ratio of the average resonance width � to the average
resonance spacing d varies from �=d � 0:01 to �=d �
1:2. Thus, the RMT model correctly describes the fluctua-
tions of the S-matrix for partial T violation in the regimes
of isolated and weakly overlapping resonances.
Elastic enhancement factor.—As a second test of the

theory we use the determined values of �, Ta, Tb,
�abs to predict the elastic enhancement factor W as a
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FIG. 4. Dependence of the cross-correlation coefficient
Ccrossð0Þ on the parameter � as predicted by the random-matrix
model for partial violation of T invariance. Also shown is how
Ccrossð0Þ ¼ 0:49ð3Þ translates into � ¼ 0:29ð2Þ.
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FIG. 5. Autocorrelation function for S12 in the range of 16–
17 GHz and at B ¼ 190 mT. In the time domain (a) the data
(dots) scatter around the theoretical fit (solid) for T1 ¼ 0:37,
T2 ¼ 0:41, �abs ¼ 2:9 and � ¼ 0:25. Transforming the results
back into frequency domain (b) confirms the good agreement
between data and theory. We observe that neighboring data
points in (b) are correlated, whereas those in (a) are not.
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function of f, which with Eq. (4) is given as W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C11ð0ÞC22ð0Þ
p

=C12ð0Þ. For T invariant systems, W de-
creases from 3 for isolated resonances with many weakly
coupled open channels to 2 for strongly overlapping reso-
nances (� � d). The corresponding values for complete
T violation are W ¼ 2 and W ¼ 1, respectively [25].
Figure 6 compares the analytic results for W (filled
circles) to the data (open circles). For small f (where
�=d 	 1 and � � 0) the experimental results differ from
the prediction W ¼ 3. Here only few resonances contrib-
ute and the errors of the experimental values for W are
large. MoreoverW is determined from only a single value
Cabð0Þ of the measured autocorrelation function while the
analytic result is based on a fit of the complete autocorre-
lation function. As f increases so does �=d, and W takes
values well below 3. At frequencies where � is largest W
drops below 2, a situation that cannot arise for T invariant
systems. The overall agreement between both data sets
above� 10 GHz corroborates the confidence in the values
of � deduced from Ccrossð0Þ.

Summary.—We have investigated partial violation of T
invariance with the help of a magnetized ferrite placed
inside a chaotic microwave billiard. We measured reflec-
tion and transmission amplitudes in the regime of isolated
and weakly overlapping resonances and determined the
cross-correlation function, the autocorrelation functions,
and the elastic enhancement factor from the data. The
results were used as a test of RMT for scattering processes
with partial T violation which yields analytic expressions
for all three observables. The parameters of the theory (T1,
T2, �abs and the parameter � for T violation) were partly
obtained directly from the data but improved values re-
sulted from fits to the autocorrelation function. The validity
of the theory was tested in two ways. (i) A goodness-of-fit
test of the Fourier coefficients of the scattering matrix
yielded excellent agreement. (ii) The elastic enhancement

factor predicted from the fitted values of the parameters
shows overall agreement with the data. We conclude that
the random-matrix description of S-matrix fluctuations
with partially broken T invariance is in excellent agree-
ment with the data.
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[12] H.-J. Stöckmann and J. Stein, Phys. Rev. Lett. 64, 2215

(1990).
[13] B. Dietz et al., Phys. Rev. Lett. 98, 074103 (2007).
[14] C. Mahaux and H.A. Weidenmüller, Shell-Model

Approach to Nuclear Reactions (North-Holland Publ.
Co., Amsterdam, 1969).

[15] C. H. Lewenkopf and A. Müller, Phys. Rev. A 45, 2635
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