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The coupled-cluster wave function factorizes to a very good approximation into a product of an

intrinsic wave function and a Gaussian for the center-of-mass coordinate. The width of the Gaussian is in

general not identical to the oscillator length of the underlying single-particle basis. The quality of the

separation can be verified by a simple procedure.
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The atomic nucleus is a self-bound quantum many-body
problem. Its Hamiltonian is invariant under translations
and rotations. Thus, total momentum and total angular
momentum are conserved quantities, respectively. When
one chooses a single-particle basis to solve the nuclear
many-body problem, one is confronted with a dilemma.
There is no single-particle basis of states that are simulta-
neous eigenstates of the momentum operator and the an-
gular momentum operator. For calculations of finite nuclei
within the nuclear shell model, one usually chooses a
spherical single-particle basis. Such a basis obviously
breaks translational invariance, and the consequences
have been addressed in numerous papers (see, e.g., [1–6]).

Only two rigorous solutions to the problem are known.
The first approach deals with the problem in translationally
invariant Jacobi coordinates. We refer the reader to
Refs. [7–9] for recent applications. Because of the factorial
scaling of the required antisymmetrization, this method is
restricted to few-body problems with A < 7 or so. The
second approach is suitable for many-body problems but
severely limits the choice of the single-particle basis to the
eigenstates of the harmonic oscillator. For the A-body
system, one considers an A-fermion basis that consists of
all single-particle product states with excitations up to and
including N@!. The corresponding model space is called a
full N@! space. In this space, eigenstates of the transla-
tionally invariant nuclear Hamiltonian are also eigenstates
of the center-of-mass Hamiltonian Hcmð!Þ (see Eq. (3)
below for a definition). Note that the Fock-space basis
employed in this approach is not translationally invariant;
i.e., the total momentum is not a conserved quantity.
Rather, the complete N@! space ensures that all eigen-
states are products of an intrinsic state c in and a center-of-
mass state c cm. The intrinsic states are invariant under
translations, while the wave function of the center-of-mass
coordinate is obviously not an eigenstate of the total mo-
mentum. Thus, the factorization

c ¼ c cmc in (1)

is central to the N@! space, and it is essential for a correct
treatment of the center-of-mass problem. Note that the

particular form of the center-of-mass wave function c cm

is irrelevant [3,6]. Recent examples for this approach are,
e.g., the no-core shell-model calculations [10,11] and the
0@! shell-model calculations [12,13].
Unfortunately, the two rigorous approaches to the

center-of-mass problem scale exponentially with the num-
ber of active nucleons. Furthermore, many nuclei of inter-
est are very weakly bound, and the oscillator basis does not
provide the correct radial asymptotics. Alternative wave-
function-based approaches such as the coupled-cluster
method [14–21], the unitary-model operator approach
[22], or stochastic shell-model approaches [23,24] scale
more gently with increasing size of the model space and
the mass number. While these methods are also based on a
single-particle basis, they do not employ a complete N@!
space. Thus, there is no analytical guarantee that the wave
functions computed by these methods also exhibit the
factorization (1). For this reason, the results obtained by
such methods are occasionally viewed with skepticism.
The concern seems not primarily with the possible break-
ing of translational invariance, but rather with the problem
to quantify the errors that might be involved. Recall that
nuclear lattice calculations also break translational invari-
ance, albeit in a controlled way [25].
It is the purpose of this Letter to eliminate these con-

cerns. Moreover, we present a simple tool (i.e., the com-
putation of expectation values of the generalized center-of-
mass Hamiltonian) that assesses to what degree the facto-
rization (1) is exhibited in coupled-cluster calculations. In
what follows, we consider the 16O nucleus and demonstrate
that the coupled-cluster wave function is a product of an
intrinsic wave function and a Gaussian for the center-of-
mass coordinate.
For the nucleus 16O we employ the low-momentum

interaction Vlowk [26], generated from Entem and
Machleidt’s chiral nucleon-nucleon potential [27] by im-
posing a smooth [28] momentum cutoff � ¼ 1:8 fm�1.
Our single-particle basis consists of spherical oscillator
states. The oscillator spacing @! and the size of the model
space (in terms of the number N of major oscillator shells)
are the parameters of our calculations. We employ the
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intrinsic Hamiltonian

Hin ¼ T � Tcm þ V;

¼ X

1�i<j�A

�ð ~pi � ~pjÞ2
2mA

þ Vð ~ri � ~rjÞ
�
: (2)

Here, T and V denote the kinetic and potential energy
operators, respectively, and Tcm denotes the kinetic energy
of the center-of-mass. The intrinsic Hamiltonian is mani-
festly invariant under translations. We perform a spherical
Hartree-Fock calculation to obtain an optimized single-
particle basis. This is followed by a spherical coupled-
cluster calculation [29]. Clearly, the Hartree-Fock single-
particle basis in combination with the coupled-cluster
method in its singles and doubles approximation (CCSD)
does not employ a full N@! space. Thus, the separation (1)
is not guaranteed from the outset of our calculations.

Figure 1 shows the ground-state energy as a function of
the oscillator spacing for a model space consisting of N ¼
9 oscillator shells. The energy varies by about 1MeVwhile
the oscillator spacing @! varies by more than a factor of 2.
This shows that the ground-state energy is very well con-
verged with respect to the size of the model space. Note
that we could easily employ larger model spaces and
improve the convergence of our results. However, this is
not necessary for the purpose of this Letter, and we refer
the reader to established benchmark calculations [30].

Let us consider the generalized center-of-mass
Hamiltonian

Hcmð ~!Þ ¼ Tcm þ 1
2mA ~!2R2

cm � 3
2@ ~!: (3)

Here, ~! is a free parameter and not necessarily identical
to the frequency ! of the underlying oscillator basis. The
generalized center-of-mass Hamiltonian (3) exhibits a
zero-energy Gaussian ground-state wave function for all
values of ~!. In what follows, we demonstrate that the

coupled-cluster ground state is the zero-energy eigenstate
of Hcmð ~!Þ for a suitably chosen frequency ~!. Thus, the
coupled-cluster wave function factorizes, and the center-
of-mass wave function is a Gaussian.
We denote the expectation value of the generalized

center-of-mass Hamiltonian (3) in the coupled-cluster
ground state as

Ecmð ~!Þ � hHcmð ~!Þi: (4)

We compute the expectation value (4) via the Hellmann-
Feynman theorem; i.e., we add a small perturbation
�Hcmð!Þ with � ¼ 0:001 to the intrinsic Hamiltonian
(2), and the expectation value results from the difference
quotient [31,32].
First, we consider the standard center-of-mass

Hamiltonian and set ~! ¼ !. The results are shown in the
inset of Fig. 1. Comparing the results for the center-of-
mass energy Ecmð!Þ with the ground-state energy suggests
that the latter does not depend on the former. This is a first
hint that the intrinsic and center-of-mass coordinates de-
couple. For the model space with @! � 20 MeV the ex-
pectation value Ecmð!Þ vanishes approximately, thus
indicating that the wave function factorizes. As a check,
we fix @! ¼ 20 MeV, add the term �Hcmð!Þ to the in-
trinsic Hamiltonian, and compute the ground-state energy
of the resulting Hamiltonian. We find that the ground-state
energy varies by merely 15 keVas� is increased from zero
to one. Since the intrinsic energy shown in Fig. 1 is practi-
cally independent of the frequency of the underlying os-
cillator basis, the wave function must approximately
factorize for all values of @! shown in Fig. 1. However,
only for @! � 20 MeV, do we know that the center-of-
mass wave function is a Gaussian.
Let us assume that the center-of-mass wave function

generally has a Gaussian shape; i.e., it is a ground state
of the generalized center-of-mass Hamiltonian (3) for a
suitably chosen frequency ~!. It is thus our task to deter-
mine this frequency. To this purpose, we employ the iden-
tity

Hcmð!Þ þ 3

2
@!� Tcm ¼ !2

~!2

�
Hcmð ~!Þ þ 3

2
@ ~!� Tcm

�
;

take its expectation value, require Ecmð ~!Þ ¼ 0, employ
hTcmi ¼ 3

4 @ ~!, and determine the unknown frequency ~!

from the already computed expectation values Ecmð!Þ.
This yields the two possible frequencies

@ ~!¼@!þ 2
3Ecmð!Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
9ðEcmð!ÞÞ2þ 4

3@!Ecmð!Þ
q

: (5)

We employ these frequencies in the generalized center-of-
mass Hamiltonian and compute the corresponding expec-
tation values Ecmð ~!Þ. We find that one expectation value is
close to zero, while the other is usually very large. The
small expectation values are shown in Fig. 2, and the
corresponding frequencies ~! are shown in the inset of
Fig. 2. The expectation values are very small compared
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FIG. 1 (color online). Ground-state energy (within CCSD) of
16O with a low-momentum potential as a function of the oscil-
lator spacing @!. The model space consists of nine major
oscillator shells. Inset: Expectation value Ecmð!Þ of the center-
of mass Hamiltonian with the standard frequency dependence.
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to the energy @ ~! � 20 MeV of spurious center-of-mass
excitations. The practically vanishing expectation values
demonstrate that the coupled-cluster wave function factor-
izes. This is the main result of this Letter. The reader
should not be concerned about the fact that some of the
expectation values shown in Fig. 2 assume small negative
values (of size �0:01 MeV). Recall that the coupled-
cluster method is nonvariational when the cluster operator
is truncated, and that small negative expectation values are
thus tolerable. As shown in the inset of Fig. 2, the fre-
quency ~! corresponding to the Gaussian center-of-mass
wave function varies only little as the frequency ! of the
underlying oscillator basis is changed. We made the fol-
lowing two checks. First, we computed the expectation
value of Tcm and found that Tcm � 3

4 @ ~!, as expected for

a Gaussian. Second, we repeated the calculations directly
in the oscillator basis and did not employ the Hartree-Fock
basis. We again find very small values for Ecmð ~!Þ of order
�0:1 MeV, and an almost constant frequency ~! very close
to what we found in the Hartree-Fock basis.

Let us also consider interactions with higher momentum
cutoff. We employ Entem and Machleidt’s chiral nucleon-
nucleon interaction [27] at next-to-next-to-next-to-leading
order (N3LO). This interaction has an approximate high-
momentum cutoff of � � 500 MeV. We apply the
coupled-cluster method to compute the ground-state en-
ergy of 16O. Because of the relatively high-momentum
cutoff of the interaction, the wave function is more corre-
lated. This requires us to employ a large model space and
three-particle-three-hole cluster amplitudes to obtain con-
verged solutions. The model spaces consist of N ¼ 19
oscillator shells; however, the maximal single-particle or-
bital angular momentum is kept at l � 13. We have verified
that this is sufficient for a convergence of the results. For

the three-particle-three-hole clusters, we employ the
�-CCSD(T) approximation [33,34].
The bottom part of Fig. 3 shows that the ground-state

energy is practically independent of the oscillator fre-
quency of the underlying single-particle basis for a large
frequency range. This demonstrates that the results are well
converged with respect to the size of the model space. We
find that the expectation value Ecmð!Þ of the standard
center-of-mass Hamiltonian increases with increasing fre-
quency ! of the model space, and that it assumes values of
tens of MeV and varies strongly with the frequency ! of
the underlying oscillator basis. Clearly, the intrinsic
ground-state energy is independent of the expectation
value Ecmð!Þ, and this suggests again a decoupling of the
intrinsic and the center-of-mass wave functions.
Let us again assume a Gaussian shape for the center-of-

mass wave function and follow our two-step procedure.
First, we employ Eq. (5) and compute the two possible
frequencies ~! that are consistent with the already com-
puted expectation value Ecmð!Þ. Second, we compute the
two corresponding expectation values Ecmð ~!Þ. As before,
we find a large and a small expectation value for each
frequency ! of the underlying oscillator basis. The small
expectation values are shown in the top part of Fig. 3. The
corresponding frequencies ~! are shown in the middle part
of Fig. 3. While not as impressive as for the low-
momentum interaction, the expectation values Ecmð ~!Þ
are below 1 MeV in size, and much smaller than the
binding energy of 16O or any of its excitations. In particu-
lar, the expectation values are small compared to the
energy @ ~! � 16 MeV of the spurious center-of-mass ex-
citations. A simple two-level model yields that the wave
function has about 6% squared overlap with spurious
states. The relative small negative eigenvalues are again
due to the nonvariational character of the coupled-cluster
method, and they are tolerable within the overall accuracy
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FIG. 2 (color online). 16O ground-state expectation value
Ecmð ~!Þ (within CCSD) of the generalized center-of-mass
Hamiltonian Hcmð ~!Þ as a function of the oscillator spacing
@!. The model space consists of nine major oscillator shells.
Inset: Relation between the frequency ~! and the frequency ! of
the underlying oscillator basis.

PRL 103, 062503 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

7 AUGUST 2009

062503-3



of the calculation. Thus, we can conclude that the coupled-
cluster wave function also exhibits an approximate facto-
rization (1) for the interaction with a relatively high-
momentum cutoff. We speculate that quadruple cluster
amplitudes would be necessary to further reduce the mag-
nitude of Ecmð ~!Þ. Note that the frequency ~! that deter-
mines the width of the Gaussian center-of-mass wave
function is again almost constant over a wide range of
frequencies of the underlying oscillator basis.

Finally, we employed the chiral potential also for 4He
and show the results in Fig. 4. The bottom part shows the
ground-state energy (E � �25:56 MeV in �-CCSD(T))
and compares it to virtually exact Faddeev-Yakubowski
calculations (E � �25:41 MeV [35]). The middle part
shows the frequency of the approximate Gaussian center-
of-mass wave function, while the top part shows the ex-
pectation value Ecmð ~!Þ. Again, the approximate factoriza-
tion is very satisfactory. At this moment, we have no
profound understanding of the observed factorization.

In summary, we presented strong numerical evidence
that wave function of the atomic nucleus is a product of an
intrinsic and a center-of-mass wave function in a suffi-
ciently large model space even when the model space is
not a complete N@! oscillator space. The center-of-mass
wave function is approximately a Gaussian whose width
varies little with the frequency ! of the underlying oscil-
lator basis. The reported results open the door for a veri-
fiable description of translationally invariant states for a
large variety of model spaces and many-body methods.

We acknowledge discussions with P. Navrátil, R. Roth,
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