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We offer a solution to a long-standing problem in the theory of networks, the creation of a plausible,

solvable model of a network that displays clustering or transitivity—the propensity for two neighbors of a

network node also to be neighbors of one another. We show how standard random-graph models can be

generalized to incorporate clustering and give exact solutions for various properties of the resulting

networks, including sizes of network components, size of the giant component if there is one, position of

the phase transition at which the giant component forms, and position of the phase transition for

percolation on the network.
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Many networks, perhaps most, show clustering or tran-
sitivity, the propensity for two neighbors of the same vertex
also to be neighbors of one another, forming a triangle of
connections in the network [1–3]. In a social network of
friendships between individuals, for example, there is a
high probability that two friends of a given individual will
also be friends of one another. The network average of this
probability is called the clustering coefficient for the net-
work. Measured clustering coefficients for social networks
are typically on the order of tens of percent and similar
values are seen in many nonsocial networks as well, in-
cluding technological and biological networks [4].

Although clustering in networks has been known of and
discussed for many years, it has proved difficult to model
mathematically. A few network models, such as the small-
world model of Watts and Strogatz, do show clustering and
are at least approximately solvable, but are also rather
specialized and not suitable as models of most real net-
works [2,5,6]. More general models based on exponential
random graphs are promising in principle, but are not
solvable for most of their properties and also suffer from
poorly understood pathologies in portions of their parame-
ter space [7,8]. A large number of computational models of
clustered networks have been proposed that are quite gen-
eral in scope, almost all based on some form of ‘‘triadic
closure’’ process in which one searches an initially unclus-
tered network for pairs of vertices with a common neighbor
and then connects them to form triangles [9–12].
Unfortunately, because of the nature of these models, the
calculation of their properties is limited to numerical
methods.

An ideal approach to modeling clustered networks
would be to generalize the standard random graphs that
form the foundation for much of modern network theory to
create an ensemble model for which one could calculate
average properties exactly. It has long been felt, however,
that such an approach is unlikely to be workable because
our ability to calculate the properties of random graphs
rests on the fact that they are ‘‘locally treelike,’’ i.e., that

they contain no short loops. The triangles of clustered
networks violate this condition, and hence one would ex-
pect their introduction into a random-graph model to ren-
der the model intractable.
But in this Letter, we show that this is not the case. We

show that it is in fact possible to generalize random graphs
to incorporate clustering in a simple, sensible fashion and
to derive exact formulas for many properties of the result-
ing networks.
The model we propose generalizes the standard ‘‘con-

figuration model’’ of network theory, which is a model of a
random graph with arbitrary degree distribution [13,14]. In
that model, one specifies the number of edges connected to
each vertex. In our generalized model, pictured in Fig. 1,
we specify both the number of edges and the number of
triangles. For a network of n vertices, we define ti to be the
number of triangles in which vertex i participates and si to
be the number of single edges other than those belonging to
the triangles. That is, edges within triangles in this model
are enumerated separately from edges that are placed
singly [15]. We can think of a single edge as being a
network element that joins together two vertices and a
triangle as a different kind of element that joins three. In
principle, one could generalize the model further to include
higher-order elements of four or more vertices. The tech-

FIG. 1. In the model proposed here, we separately specify the
number of single edges and complete triangles (shaded) attached
to each vertex.
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niques described here can be extended in a straightforward
fashion to such cases.

We can think of si as specifying the number of ends or
‘‘stubs’’ of single edges that emerge from vertex i and ti as
specifying the number of corners of triangles. The com-
plete joint degree sequence fsi; tig specifies the numbers of
such stubs and corners for every vertex. In simple cases the
values of si and ti may be uncorrelated, but correlated
choices are also possible that allow us to reproduce more
complex behaviors seen in some networks, such as varia-
tion of local clustering with degree [16].

Given the degree sequence, we create our network by
choosing pairs of stubs uniformly at random and joining
them to make complete edges, and also choosing trios of
corners at random and joining them to form complete
triangles. The end result is a network drawn uniformly at
random from the set of all possible matchings of stubs and
corners. The only constraint is that, in order that there be no
stubs or corners left over at the end of the process, the total
number of stubs must be a multiple of 2 and the total
number of corners a multiple of 3.

We define the joint degree distribution pst of our net-
work to be the fraction of vertices connected to s single
edges and t triangles. The conventional degree of such a
vertex is k ¼ sþ 2t, since each triangle connected to a
vertex contributes 2 to the degree and each single edge
contributes 1, and hence the conventional degree distribu-
tion of the network is

pk ¼
X1
s;t¼0

pst�k;sþ2t; (1)

where �ij is the Kronecker delta.

As with other random-graph models, calculations for the
model presented in this Letter make use of probability
generating functions. The generating function for the joint
degree distribution of our network is a function of two
variables thus:

gpðx; yÞ ¼
X1
s;t¼0

pstx
syt: (2)

We can also write down a generating function for the total
degree distribution pk thus:

fðzÞ ¼ X1
k¼0

pkz
k ¼ X1

s;t¼0

pstz
sþ2t ¼ gpðz; z2Þ: (3)

We can use these generating functions to calculate, for
instance, the clustering coefficient C of the network. The
clustering coefficient can be defined as [13]

C ¼ 3� ðnumber of triangles in networkÞ
ðnumber of connected triplesÞ ¼ 3N4

N3

; (4)

where a connected triple means a single vertex connected
by edges to two others. For the present model, we have

3N4 ¼ n
X
st

tpst ¼ n

�
@gp
@y

�
x¼y¼1

; (5)

N3 ¼ n
X
k

k
2

� �
pk ¼ 1

2
n

�
@2f

@z2

�
z¼1

; (6)

and substituting into (4) then gives us the value of the
clustering coefficient. Note that the factors of n cancel
out in the substitution, giving a value of C that can remain
nonzero in the limit n ! 1 so that the network remains
clustered, by contrast with the configuration model and
similar random graphs for which C ! 0.
A further quantity that will be important in the following

calculations is the so-called excess degree distribution
[13]. In the current model, there are actually two different
excess degree distributions,

qst ¼ ðsþ 1Þpsþ1;t

hsi ; rst ¼ ðtþ 1Þps;tþ1

hti ; (7)

where hsi and hti are the averages of s and t over all
vertices. Here, qst is the distribution of the number of edges
and triangles attached to a vertex reached by traversing an
edge, excluding the traversed edge, and rst is the corre-
sponding quantity for a vertex reached by traversing a
triangle. The generating functions for these distributions
are

gqðx; yÞ ¼
X
st

qstx
syt ¼ 1

hsi
X
st

spstx
s�1yt ¼ 1

hsi
@gp
@x

; (8)

grðx; yÞ ¼
X
st

rstx
syt ¼ 1

hti
X
st

tpstx
syt�1 ¼ 1

hti
@gp
@y

: (9)

One of the definitive features of any network is its giant
component—the portion of the network that is connected
into a single extensive group such that any vertex in the
group can be reached from any other via the network. In a
communication network, for example, the giant compo-
nent corresponds to the fraction of vertices that can ac-
tually intercommunicate, the rest being isolated in
disconnected small components. We can use our generat-
ing functions to calculate the size of the giant component in
the clustered network.
Let u be the mean probability that a vertex reached by

traversing a single edge is not a member of the giant
component and v be the corresponding probability for a
vertex reached by traversing a triangle. (Equivalently, v2 is
the probability that a triangle does not lead to the giant
component via either of the vertices at its other corners.) In
order for a vertex at the end of a single edge not to belong
to the giant component, all the other vertices to which it is
connected, either by edges or by triangles, must also not be
members of the giant component. If it is connected to s
other edges and t triangles, then this happens with proba-
bility usv2t. The generalized degrees s and t are distributed
according to the excess degree distribution qst and, aver-
aging over this distribution, we find

u ¼ X
st

qstu
sv2t ¼ gqðu; v2Þ: (10)

By a similar argument, we also find that
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v ¼ grðu; v2Þ: (11)

Then the probability that a randomly chosen vertex is not in
the giant component is

P
stpstu

sv2t ¼ gpðu; v2Þ and the

expected size S of the giant component as a fraction of the
entire network is one minus this quantity:

S ¼ 1� gpðu; v2Þ: (12)

Between them, Eqs. (10)–(12) allow us to calculate the size
of the giant component if there is one.

As an example, consider a network that has the doubly
Poisson degree distribution

pst ¼ e�� �s

s!
e�� �

t

t!
; (13)

where the parameters � and � are the average numbers of
single edges and triangles per vertex, respectively. Then,

gpðx; yÞ ¼ gqðx; yÞ ¼ grðx; yÞ ¼ e�ðx�1Þe�ðy�1Þ, and u ¼
v ¼ 1� S, leading to

S ¼ 1� e�½�Sþ�Sð2�SÞ�: (14)

This is a transcendental equation that has no closed-form
solution (other than the trivial solution S ¼ 0), but it can
easily be solved by numerical iteration starting from a
suitable initial value. The right-hand panel of Fig. 2 shows
the resulting giant component size as a function of cluster-
ing coefficient for a network with fixed average degree. As
the figure shows, the size of the giant component falls off
with increasing clustering coefficient, which happens be-
cause the triangles that give the network its clustering
contain redundant edges that serve no purpose in connect-
ing the giant component together. One edge out of every
three in a triangle is redundant in this way. Thus, for a
given average degree, and hence a given total number of

edges, fewer vertices can be connected together in a net-
work of triangles than in a network of single edges.
We can also calculate the sizes of the small components

in the network. Let hqðzÞ be the generating function for the
distribution of number of vertices accessible, either di-
rectly or indirectly, via the vertex at the end of a single
edge, and similarly for hrðzÞ and triangles. Then, by an
argument analogous to that of [13], we can show that

hqðzÞ ¼ zgqðhqðzÞ; h2rðzÞÞ; hrðzÞ ¼ zgrðhqðzÞ; h2rðzÞÞ;
(15)

and the probability that a randomly chosen vertex any-
where in the network belongs to a component of a given
size is generated by

hpðzÞ ¼ zgp½hqðzÞ; h2rðzÞ�: (16)

Then, for example, the mean size of the component to
which a vertex belongs is

h0pð1Þ ¼ 1þ gð1;0Þp ð1; 1Þh0qð1Þ þ 2gð0;1Þp ð1; 1Þh0rð1Þ; (17)

where gðm;nÞ
p is gp differentiated m times with respect to its

first argument and n times with respect to its second.
The derivatives h0qð1Þ and h0rð1Þ in Eq. (17) can be found

from Eq. (15) by differentiating, setting x ¼ y ¼ 1, and
making use Eqs. (8) and (9), which gives

h0qð1Þ ¼ 1þ 1

hsiHxxh
0
qð1Þ þ 2

hsiHxyh
0
rð1Þ; (18)

h0rð1Þ ¼ 1þ 1

htiHyxh
0
qð1Þ þ 2

htiHyyh
0
rð1Þ; (19)

where the H variables are the elements of the Hessian
matrix H of second derivatives of gp, evaluated at the

point x ¼ y ¼ 1:

Hxx ¼ gð2;0Þp ð1; 1Þ; Hxy ¼ gð1;1Þp ð1; 1Þ; (20)

and so forth.
We can write Eqs. (18) and (19) in matrix form as h ¼

1þ��1H� � h, where the vectors h and 1 are h ¼
ðh0qð1Þ; h0rð1ÞÞ and 1 ¼ ð1; 1Þ and the diagonal matrices �

and � are

� ¼ hsi 0
0 hti

� �
; � ¼ 1 0

0 2

� �
: (21)

Rearranging yields ðI� ��1H�Þ � h ¼ 1, where I is the
identity matrix, and by inverting this equation and combin-
ing the result with Eq. (17), we can find the average
component size.
The average will diverge at the point where detðI�

��1H�Þ ¼ 0 and, performing the derivatives in Eq. (20),
we find the following condition for this point, which is the
point at which the giant component forms:

�hs2i
hsi � 2

��
2
ht2i
hti � 3

�
¼ 2

hsti2
hsihti : (22)

In the case where there are no triangles in the network, this
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FIG. 2. Right panel: the size of the giant component in net-
works with the degree distribution of Eq. (13) and average
degree �þ 2� ¼ 2, as a function of clustering coefficient.
Left panel: the size of the giant cluster for percolation on the
same networks for values of the clustering coefficient C ¼ 0,
0.1, 0.2, and 0.3, as a function of bond occupation probability �.
When � ¼ 1 the giant cluster and giant component have the
same size, as indicated by the dotted lines.
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equation reduces to the well known criterion hs2i=hsi �
2 ¼ 0 of Molloy and Reed [14] for the phase transition in
the ordinary configuration model. When triangles are
present, Eq. (22) gives the appropriate generalization of
that criterion.

We can calculate many other properties of our networks,
including average path lengths and vertex connection prob-
abilities. As our final example in this Letter, we demon-
strate the calculation of percolation properties of random
graphs with clustering. Both site and bond percolation
processes on networks have important applications: site
percolation is related to network resilience [17,18], while
bond percolation is related to the dynamics of disease and
other spreading processes [19,20]. Consider, for instance, a
bond percolation process on our model network, with each
edge in the network occupied independently with proba-
bility �. By analogy with our earlier calculations, let u be
the probability that a vertex is not connected to the perco-
lating (giant) cluster of this percolation process via one of
its single edges, and let v2 be the corresponding probability
for a triangle.

If a vertex is not connected to the giant cluster via a
given single edge, then one of two things must be true:
either the edge is not occupied, which happens with proba-
bility 1��, or it is occupied but the vertex at its end is
itself not connected to the giant cluster via any of its other
edges or triangles of which, let us say, there are s and t,
respectively. This second process happens with probability
�usv2t. But s and t are by definition distributed according
to the excess degree distribution qst and, averaging over
this distribution, we then find that

u¼1��þ�
X
st

qstu
sv2t¼1��½1�gqðu;v2Þ�: (23)

The corresponding equation for triangles is more involved,
but still essentially straightforward to derive:

v2 ¼ 1� 2�ð1��Þ2½1� grðu; v2Þ�
��2ð3� 2�Þ½1� g2rðu; v2Þ�: (24)

And the size S of the giant cluster of the percolation
process is given by S ¼ 1� gpðu; v2Þ.

The left-hand panel of Fig. 2 shows S as a function of �
for the Poisson network of Eq. (13), for fixed average
degree and several different values of the clustering coef-
ficient. As the figure shows, higher clustering pushes the
percolation transition toward lower values of �, which can
be understood as an effect of the redundant paths intro-
duced by the triangles in the network, which provide more
opportunities to connect clusters together. At the same
time, the ultimate size of the giant cluster as � approaches
1 is smaller in more clustered networks and indeed be-
comes equal to the size of the giant component when � ¼
1, as indicated by the dashed lines in the figure. Other
properties of the percolation process can be calculated in a
similar fashion, including the position of the percolation

threshold, the mean size of small clusters, and the complete
distribution of sizes of small clusters.
To conclude, we have proposed a random-graph model

of a clustered network that is exactly solvable for many of
its properties including component sizes, existence and
size of a giant component, and percolation properties.
The model answers a long-standing question in the study
of networks by showing how to construct an unbiased
ensemble of networks with clustering, and could form
the basis for future investigations of the effects of cluster-
ing on many processes of interest, including epidemic
processes, network resilience, and dynamical systems on
networks.
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(2006).
[4] M. E. J. Newman and J. Park, Phys. Rev. E 68, 036122

(2003).
[5] M. E. J. Newman, Phys. Rev. E 68, 026121 (2003).
[6] X. Shi, L. Adamic, and M. J. Strauss, Physica A

(Amsterdam) 378, 33 (2007).
[7] Z. Burda, J. Jurkiewicz, and A. Krzywicki, Phys. Rev. E

69, 026106 (2004).
[8] J. Park and M. E. J. Newman, Phys. Rev. E 72, 026136

(2005).
[9] P. Holme and B. J. Kim, Phys. Rev. E 65, 026107 (2002).
[10] K. Klemm and V.M. Eguiluz, Phys. Rev. E 65, 036123

(2002).
[11] M.A. Serrano and M. Boguñá, Phys. Rev. E 72, 036133
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