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Stochastic and Spatial Influences on Drug-Induced Bifurcations in Cardiac Tissue Culture
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The addition of a drug that specifically blocks a potassium channel in spontaneously beating aggregates
of chick heart cells leads to complex bifurcations over time. A stochastic partial differential equation
model based on discrete ionic currents recorded in these cells demonstrates that drug diffusion and noise
can induce the coupled beats and bursting rhythms observed. These results provide further evidence that
stochastic events at a subcellular level are needed to understand complex cardiac arrhythmias and play an

important role in the onset of these arrhythmias.
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Even a cursory examination of texts describing abnor-
mal cardiac rhythms in people reveals a cornucopia of
complex dynamics [1]. Viewed from a physical perspec-
tive, the onset of these arrhythmias is associated with a
bifurcation in the dynamics of the heart as a consequence
of a change in the structure of the heart, or by a change in
the parameters controlling the cellular processes in the
heart induced by circulating agents such as electrolytes,
hormones, or drugs that affect cardiac tissue [2,3]. Since at
a subcellular level, cardiac activity results from the sto-
chastic opening and closing of ion channels and calcium
release, stochastic influences should play an important role
in both the normal dynamics of the heart [4-7] and also in
the bifurcations associated with the generation of arrhyth-
mias. Thus, models of cardiac arrhythmias share common
features with other physical systems that involve noise in
spatially extended systems [8,9]. In the case of the heart,
the noise can have observable effects at a macroscopic
level. Models of cardiac arrhythmias require inclusion of
noise terms to obtain qualitative agreement with long term
clinical recordings [10,11].

These theoretical considerations have practical signifi-
cance in the analysis of drug-induced cardiac arrhythmias.
In particular, many drugs unexpectedly block the human
ether-a-go-go related gene (hERG) channel which under-
lies the Ik, potassium current. The blocking of Ik, leads to
the generation of a second abnormal heart beat generated
with a short delay following a normal heart beat, and this in
turn may lead to the initiation of serious arrhythmia [12—
14]. This scenario of drug-induced arrhythmia poses a
significant barrier to the development of new drugs [15,16].

In this Letter, we study dynamics following administra-
tion of a drug that blocks the hERG channel in sponta-
neously beating aggregates of cells from embryonic chick
hearts. By using optical methods to record the heart beat
[17,18], we are able to simultaneously monitor the dynam-
ics in multiple aggregates all of which have been treated in
identical fashion. We simulate the dynamics in a single cell
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and a hemispheric aggregate of cells using deterministic
ordinary and partial differential equations to model the
effect of drug addition. We also consider the dynamics
associated with noise generated by the stochastic opening
and closing of ion channels in a single cell and during drug
diffusion into the aggregates [4,5]. The model of the ag-
gregate reproduces the complex time dependent rhythms
observed experimentally and illustrates a novel mechanism
for the dynamics involving noise in a system undergoing
bifurcations due to a changing spatial structure.

The heart cell aggregates were prepared according to the
method described by DeHaan [19]. Ventricular portions of
hearts from 7-day-old White Leghorn chick embryos were
dissected, dissociated into single cells by trypsinization,
added to Erlenmeyer flasks containing a culture medium
(818A) gassed with 5% CO,, 10% O,, 85% N, (pH =
7.4), and placed on a gyratory shaker for 24-48 hours at
37 °C. This procedure generates aggregates with a diame-
ter of approximately 100-200 wm, and a regular beating
pattern with a period of approximately 1-2 s and coeffi-
cient of variation of =2%. The intracellular voltages of
different cells in the same aggregate have upstrokes that
occur with a time difference of at most 50 us [20], so the
aggregate is essentially homogeneous electrically.
Experiments were performed 2 to 6 hours after the aggre-
gates were plated in plastic tissue culture dishes main-
tained at 37°C. The Ik, channel blocker E-4031
(Alomone Labs, Jerusalem) was added at various concen-
trations in the range of 1.0-2.0 uM.

Recent studies have used the motion resulting from
contractions of cardiac cells to monitor dynamics in tissue
culture [17,18]. This method has the advantage of enabling
recordings for long times without the complicating effects
that may be induced by the addition of voltage or calcium
sensitive dyes, and enables us to track the drug effects in
several aggregates simultaneously from an area of
~1 cm? for up to two hours. We record the beating as
reflected by the light intensity variation at the edge of the
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aggregate using phase contrast imaging sampled at 40 Hz
using a CCD camera (RedShirtImaging, LLC. NeuroCCD-
SM) with an 80 X 80 spatial resolution. We report results
on 91 aggregates in 7 different culture dishes.

When E-4031 is added to the culture medium, the beat-
ing activities of most aggregates change in a time depen-
dent manner. In order to monitor the changes in the beat
pattern, we measure the interbeat interval (IBI) as a func-
tion of time. Figure 1 displays typical transitions. The
upper figure is the interbeat interval as a function of
time, and the lower panels show the motion recording at
selected times during the recording as indicated in the
upper figure. Following addition of the drug, there is a
time interval, typically between 10-40 min during which
there are negligible changes in the interbeat interval.
Following this initial interval, several different rhythms
may arise. The times of the transitions between the
rhythms and the rhythms themselves show a great deal of
variability, even for aggregates in the same culture dish that
were subjected to exactly the same preparation procedures.
The predominant rhythm in these experiments, observed in
70/91 aggregates, was an alternation between long and
short intervals. In 39/91 aggregates, there is a gradual
development of the alternation, similar to dynamics occur-
ring as a consequence of a period-doubling bifurcation,
whereas in 21/91 aggregates, there are added beat rhythms
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FIG. 1 (color online). Experimental observations of the motion
in embryonic heart cell aggregates following addition of 2 uM
of Iy, channel blocker, E-4031 to the culture medium at ¢t = 0.
The interbeat intervals (IBIs) as a function of time are plotted in
the upper panel with samples of corresponding motion record-
ings at selected times during the recording. The brief pauses in
the data in the upper panels represent the times when the
recording was interrupted to downloaded data to the hard disk.

in which there are occasional doublets in which there are
two consecutive beats with an abnormally short interbeat
interval. A chaotic rhythm, identified from a one dimen-
sional map in which the IBI is plotted as a function of the
preceding IBI, was observed 5/91 aggregates, all from the
same dish, following an alternating rhythm. Finally, in
45/91 aggregates, there were bursting rhythms, eventually
leading to a rapid rhythm.

As a first step in understanding the origin of these
transitions, we develop a Hodgkin-Huxley type ionic
model for drug effects on the beating aggregates. We
assume that V = —1I,,,/C; where V is the membrane po-
tential, I, is the total membrane current, and C; is the
input capacitance. Based on earlier studies of the ionic
mechanisms underlying cardiac activity in embryonic
chick heart cell cultures [4,6,21], we assume that [, =
Igo + ey + Ixg + Ixe + Igy + 1 + 15 + Lgiee, Where Iy,
is the inward sodium ion current which controls the maxi-
mum rate of rise of the action potential upstroke, I, is the
calcium ion current primarily responsible for the inward
current during the plateau phase, I, is the slowly activat-
ing potassium current that underlies the primary repolari-
zation, Iy, is the rapidly activating delayed rectifier
potassium current responsible for the repolarization phase
of the action potential, /g is the inward rectifier potassium
channel, /, is a time independent background current, / is
the hyperpolarization activated pacemaker current, and
I oise 18 @ noise current that is used in the stochastic models.
We further assume that the effect of E-4031 on potassium
conductance gy, is described by

8Kr,0

1/2
where gk, is the maximum value of gg,, ¢ is the concen-
tration of E-4031, ¢, is the value of ¢ at half maximum,
and n is a parameter. We consider two different situations:
dynamics in a single spatially homogeneous cell as a
function of concentration, and dynamics in a theoretical
model of the spatially heterogeneous aggregate as the drug
diffuses into the aggregate. The integration of the spatially
heterogeneous model uses a finite element method [22].
The time dependence of the drug concentration is obtained
by integrating the diffusion equation in a hemispherical
geometry [23]. For both the single cell and the aggregate,
we consider both the deterministic equation and a stochas-
tic equation that reflects random fluctuations in ion channel
opening and closing [5-7]. Parameters and the detailed
equations are included in the supplementary online mate-
rial [24].

We first consider the bifurcations in the theoretical
model as a function of E-4031 concentration assuming a
spatially homogeneous deterministic equation, Fig. 2(a).
At low drug concentrations, there is stable rhythm. As the
concentration increases, there is a period-doubling bifur-
cation at = 0.9 uM leading to an alternation of IBI inter-
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FIG. 2 (color online). (a) Bifurcation diagram of interbeat
intervals (IBIs) in a deterministic single cell model as a function
of concentration of the drug E-4031. (b) Bifurcation diagram of
IBIs in the deterministic spatially extended model as a function
of time assuming an external concentration of E-4031 of 2 uM.

vals in the range =0.9-1.2 uM. In the model, E-4031
blocks the Ik, leading to a prolonged action potential and
a slowing of repolarization. This provides the opportunity
for sufficient recovery of the sodium channel from inacti-
vation to initiate another beat with a shorter IBI. A second
bifurcation leading to four different IBI intervals (2 of
which are almost equal =0.3 s) occurs at drug concentra-
tions between =~1.2-1.25 uM. As the drug concentration
further increases, there is a rapid rhythm with alternating
IBIs and finally a rapid stable rhythm.

We also computed the dynamics in a 150 pwm radius
hemispheric aggregate as a function of time, Fig. 2(b). We
solved the diffusion-reaction equation using the finite ele-
ment method with a model comprising 1954 nodes. Drug
concentrations within the aggregate were dependent on
time and radial position to account for diffusion from the
bath into the aggregate [24]. Comparison of the bifurcation
diagrams in Fig. 2 shows a striking similarity between the
bifurcations in the spatially homogeneous model as a
function of drug concentration, and the hemispheric ag-
gregate as a function of time. However, neither of these
simulations display the more complex rhythms observed in
the experiments.

In order to model such dynamics, we consider models in
which a stochastic term is added to the total current. We
carried out computations on both the single cell model,
Fig. 3, and the spatially extended model, Fig. 4. The
simulated time series in Figs. 3 and 4 appear very similar
to each other, and also to the experimental recordings. In
particular, added beat rhythms and bursting rhythms occur
in the stochastic models, but not in the deterministic mod-
els. Although we had expected that there should be differ-
ences between the bifurcations induced by drug in a single
homogeneous cell as a function of concentration, and the
bifurcations occurring over time induced by diffusion of
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FIG. 3 (color online). Uppermost panel: bifurcation diagram
of the single cell stochastic model. Panels (a)—(g):
Representative time series at increasing drug concentration of
the single cell stochastic model.

the drug into the spatially extended aggregate, we were
surprised to find that the qualitative features of the bifur-
cations appear to be quite similar. If the cells in the
aggregate were uncoupled, then in general, there would
be different dynamics in the outer and inner regions of the
aggregate reflecting the local drug concentration, but the
coupling leads to a spatial uniformity in the model, as it
does in the aggregate. However, the spatially homogeneous
model does not account for the time dependence of the
bifurcations. The simulations support the notion that the
observed time dependence of the dynamics are due to the
changing concentration profile of the drug as a conse-
quence of diffusion of drug into the aggregate.

The current work has implications in both physical and
biological realms. The dynamics observed in the cardiac
tissue in this work bears qualitative similarities to rhythms
observed in nerve cells under a variety of different experi-
mental manipulations and in mathematical models of those
systems [25,26]. This earlier work analyzes the bifurca-
tions leading to added beat, bursting, and chaotic rhythms
in nonlinear ordinary differential equations modeling neu-
ral dynamics as a function of parameter values. The current
observations enlarge the class of physiological systems and
associated mathematical models in which these phe-
nomena are found. Although deterministic models of
both the single cell and aggregate did not display added
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FIG. 4 (color online). Uppermost panel: bifurcation diagram
of the spatially extended stochastic model. Panels (a)—(g):
Representative time series at increasing drug concentration of
the spatially extended stochastic model.

beat or bursting rhythms, Fig. 2, addition of the stochastic
terms did lead to a generation of these complex dynamics,
Figs. 3 and 4. This further supports the important role of
stochastic factors in partial differential equations in the
neighborhood of bifurcations and phase transitions [8,9].

Some patients display coupled beats and short bursts of
activity, preceding sudden cardiac death [11,27]. A recent
study has pointed to a particular electrophysiological ab-
normality called early afterdepolarizations in inducing
similar rhythms in individual rabbit heart cells and whole
rabbit heart [3]. We propose that the doublets and short
bursts of activity observed here may offer a biological
model for these arrhythmias and insight into their genesis
[11]. Although the current experimental model is different
from the one in [3], we believe that the underlying mecha-
nism generating couplets in these experiments may be
similar to mechanisms generating early afterdepolariza-
tions in other contexts [7,12,14]. Consequently, the irregu-
lar couplets and bursting rhythms under compromise of
potassium channel blockade may help provide insight into
the genesis of complex rhythms including those that pre-
cede sudden cardiac death.
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NSERC, and the Quebec Heart and Stroke Foundation.
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