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We present a variational analysis for a half-quantum vortex (HQV) in the equal-spin-pairing superfluid

state which, under suitable conditions, is believed to be realized in Sr2RuO4 and
3He-A. Our approach is

based on a description of the HQV in terms of a BCS-like wave function with a spin-dependent boost. We

predict a novel feature: the HQV, if stable, should be accompanied by a nonzero spin polarization. Such a

spin polarization would exist in addition to the one induced by the Zeeman coupling to the external field

and hence may serve as an indicator in experimental search for HQV.
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When 3He is liquefied and cooled into the millidegree
regime it enters a new phase which has been proved to
possess a spin triplet paired condensate. There also exists
by now a growing body of experimental evidence that
Sr2RuO4 below 1.5 K is a spin triplet superconductor [1].
This implies the possibility of many interesting phenomena
not expected in systems with spin singlet pairing. One of
them is the existence of half-quantum vortices (HQVs) in
the equal-spin-pairing (ESP) state of the spin triplet con-
densate [2,3]. The ESP state can be loosely described as
having two superfluid condensates with different spin
states, and the HQV is then a vortex in just one of them.
Alternatively, the HQV can be characterized by a half-
integer value of vorticity in contrast to the regular quantum
vortex where the vorticity takes only integer values.

The pairing symmetry for 3He is well established and the
so-called A phase is confidently believed to realize an ESP
spin triplet state [4,5]. While there is, to the best of our
knowledge, no unambiguous observation of HQV in 3He-A
[6], there is a strong theoretical argument in favor of their
existence at least under some assumptions on the geometry
of the experiment. On the contrary, the pairing state of
Sr2RuO4 is currently poorly understood and the observa-
tion (or not) of HQV, along with other experimental infor-
mation, would facilitate identification of the underlying
pairing symmetry. In addition, there is a significant interest
in HQV for topological quantum computing [7].

It should be noted right away that the identification of
the superconducting phase of Sr2RuO4 with an ESP state
does not by itself guarantee thermodynamic stability of
HQV in this compound. Even under the assumption of
negligible spin-orbit coupling, the kinetic energy of
unscreened spin currents which accompany HQV disfavors
its formation vis-à-vis the formation of a regular vortex
where electromagnetic currents are screened over the
length of the penetration depth. Such an unfavorable en-
ergy balance can be avoided by limiting the sample size to
a few microns [8]. This however further complicates the
experimental detection of HQV in Sr2RuO4.

One of the most direct ways for detection of HQV is to
look for spin currents which circulate around it. The usual
techniques for spin current detection are based on the
accumulation of spin, and their straightforward application
to this situation seems to be difficult. One can, however,
use a fact that spin currents generate electric field. A very
rough conservative estimate shows that for a ring of size
1� the quadrupole electric field generated by the spin
currents of HQV will create a potential difference of
1 nV across the ring—quite small, but not beyond the
capabilities of current experimental techniques.
There is also a possibility of detecting HQV by looking

for specific features in the magnetization curves of small
rings made of Sr2RuO4. Experiments in this direction are
currently underway in the Budakian group at UIUC.
In this Letter we suggest an apparently new effect which

may be utilized for the detection of HQV both in Sr2RuO4

and in 3He-A. The effect consists in the presence of an
effective Zeeman field in the HQV state of the ESP con-
densate. In thermodynamic equilibrium such an effective
Zeeman field will produce a nonzero spin polarization in
addition to that created by external fields. In particular,
such a spin polarization would exist even in the absence of
external Zeeman coupling provided the condensate is in
the HQV state. At the same time this field would not exist
in a normal vortex state thus allowing one to distinguish
between the two. For a 1� ring of Sr2RuO4 the magnitude
of the effective Zeeman field is about 10 G and, taking the
spin susceptibility to be of order 10�3 emu=mol [1], the
spin polarization produced by such a field can be seen in T1

or even Knight shift measurements.
We start by noticing that in the ESP state the Cooper

pair is always in a linear superposition of states in which
both spins in the pair are either aligned (‘‘up’’) or anti-
aligned (‘‘down’’) with a common direction in space.
The corresponding many-body wave function for a system
with N=2 pairs which are condensed into the same two-
particle state characterized by functions ’" and ’# can be

written as
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�ESP ¼ Af½’"ðr1; r2Þj""i þ ’#ðr1; r2Þj##i� � � �
½’"ðrN�1; rNÞj""i þ ’#ðrN�1; rNÞj##i�g; (1)

where A is the antisymmetrization operator with respect
to particles’ coordinates ri and spins. In the weak-coupling
limit, provided the pairing interaction conserves spin, the
up and the down spin particles can be considered as inde-
pendent subsystems. In this case the HQV state of the ESP
condensate has a simple physical interpretation: It is a state
in which the two spin systems have different winding
numbers, i.e., accommodate a different number of vortices.

To avoid complications related to the presence of the
vortex core we specialize to an annular geometry. Let R be
the radius of the annulus and d be the wall thickness; it will
be assumed that d=R � 1 so that effects of order d=R or
higher can be ignored. Then specializing to the zero-
temperature case and choosing the spin axis along the
symmetry axis of the annulus, a conceptually simple ansatz
for the HQV state of the condensate is

�HQV ¼ exp

�
i‘"
2

X
i¼"

�i þ i‘#
2

X
i¼#

�i

�
�ESP; (2)

where �i denotes the azimuthal coordinate of the ith par-
ticle on the annulus. The integer ‘� is a projection of the
angular momentum of the �th component of the wave
function of the pair on the symmetry axis; the coefficient
1=2 in the exponent reflects the fact that ‘� is the momen-
tum of the pair, and the case ‘" ¼ ‘# corresponds to a

regular full vortex. As can be seen from the above, state
�HQV is obtained from the initial state �ESP by a uniform

spin-dependent boost. While there might be doubts that the
actual HQV is described by such a simple form, it never-
theless should be considered as a good starting point for a
variational analysis.

In the d-vector formalism �HQV as written above pro-

duces a d vector which lies in the plane perpendicular to
the spin axis, i.e., to the symmetry axis of the annulus. For
an annulus made of single crystal Sr2RuO4 with the c axis
along the symmetry axis, this corresponds to d being in the
ab plane of the crystal. Although this configuration is not
favored by the spin-orbit interaction, there are theoretical
indications that even a very small external magnetic field
along c axis can stabilize it [9]. Similar considerations also
apply to 3He-A, and in what follows the in-plane position
of the d vector will be assumed. It should be emphasized
however that our qualitative conclusion about nonzero spin
polarization in HQV does not depend on this assumption.

Knowledge of the state (2) allows one to obtain a varia-
tional energy of HQV which can then be minimized to
yield its detailed structure. For definiteness, from now on
we will consider only charged systems. In this case the
appropriate for minimization thermodynamic potential is
Gibbs energy:

G ¼ hH i þ
Z

d3r

�
1

8�
B2 � 1

4�
H �B

�
; (3)

where hH i is the expectation value of the Hamiltonian of
the system and B and H are the magnetic field and induc-
tion, respectively. For an annulus in a shape of an infinite
cylinder with the fields along the symmetry axis H is the
external magnetic field and B is the field inside the
cylinder.
As it will be seen below, the actual form ofH is crucial

for the stability of the HQV. In the simplest caseH can be
taken to contain only the reduced BCS HamiltonianH BCS

with the spin triplet pairing term. However, such a choice
of H combined with the ansatz (2) never makes HQV
thermodynamically stable; at best the HQV, in which ‘" �
‘#, is degenerate with a full vortex ‘" ¼ ‘# at the transition
point between states with different vorticities. To lower the
energy of HQV below that of a full vortex one needs to
account for strong interparticle forces. This can be done in
the framework of Fermi liquid theory which is also appli-
cable in the superconducting state [10]. With that purpose
we write the Hamiltonian of the system as

H ¼ H BCS þH FL: (4)

Here H FL describes energy corrections due to Fermi
liquid effects and H BCS is a reduced BCS Hamiltonian
with spin triplet pairing term representing the weak-
coupling part of the theory. We will first evaluate the
expectation value of the weak-coupling Hamiltonian on
the state (2). It can be written as a sum of three terms
which have different physical origins:

EBCS ¼ E0 þ ES þ T: (5)

The first term in the equation above is the energy contri-
bution coming from the internal degrees of freedom of
Cooper pairs. For the radius of the annulus R much larger
than the BCS coherence length �0, this contribution will
depend on neither the center of mass motion of the Cooper
pairs, i.e., on quantum numbers ‘" and ‘#, nor the magni-

tude of the magnetic field [11]. Assuming that we are
dealing with a big enough annulus, this term will not be
included in the subsequent considerations.
The second term is the spin polarization energy of the

system. Let N� be the number of particles with spin
projection�. Defining S as a projection of the total number
spin polarization on the symmetry axis

S � ðN" � N#Þ=2; (6)

and gS as the gyromagnetic ratio for the particles in ques-
tion, the spin polarization energy takes the following form

ES ¼ ðgS�BSÞ2
2�ESP

� gS�BB � S; (7)

where �ESP is the spin susceptibility of the ESP state
calculated in the weak-coupling limit. It should be noted
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that at this point the total spin polarization S is a variational
parameter with the actual value of S to be found by the
minimization of energy.

The third term on the right-hand side of Eq. (5) is the
kinetic energy of the currents circulating in the system. Let
� be the total flux through the annulus and�0 � hc=2e be
the flux quantum. Introducing the notation

‘s� � ‘" þ ‘#
2

��=�0; ‘sp � ‘" � ‘#
2

; (8)

one obtains for T the following expression:

T ¼ @
2

8m�R2
fð‘2s� þ ‘2spÞN þ 4‘sp‘s�Sg; (9)

wherem� is the effective mass of the particles due to Fermi
liquid corrections [12]. In the expression above the first
term in the brackets is proportional to the total number of
particles N � N" þ N# and is thus fixed for given values of
‘s, ‘sp. The second term is proportional to the spin polar-

ization S and creates an effective Zeeman field in the HQV
state due to a mismatch between velocities of the up and
down spin components. The value of this field and hence
the magnitude of the thermal equilibrium spin polarization
should be found by energy minimization. However, as has
already been emphasized, minimization of EBCS (or corre-
sponding Gibbs potential G when self-inductance is im-
portant) does not produce a stable HQV; at best the HQV
is degenerate with a full vortex at the transition point at
which the effective Zeeman field vanishes due to vanishing
of ‘s�.

To make an HQV stable one needs to go beyond the
weak-coupling Hamiltonian and introduce strong-coupling
effects. This can be done in the framework of Fermi liquid
theory, in the way indicated by Eq. (4). For that we need to
calculate the change of the Fermi liquid energy EFL caused
by the presence of spin and momentum currents in the
HQV state. These currents are generated by the spin-
dependent boost (2) and can be expressed in terms of
spin-up and spin-down quasiparticle distributions. Using
the standard formalism of Fermi liquid theory one obtains:

EFL ¼ 1

2

�
dn

d�

��1
Z0S

2 þ N�1
@
2

8m�R2

1

3

��
‘2s�F1 þ ‘2sp

Z1

4

�
N2

þ 4

�
‘2spF1 þ ‘2s�

Z1

4

�
S2 þ 4‘s�‘sp

�
F1 þ Z1

4

�
SN

�
:

(10)

Here (dn=d�) is the density of states at the Fermi level and
Z0, Z1, and F1 are Landau parameters [13]. The first term,
proportional to Z0, is the energy cost produced by a spin
polarization and the rest describes Fermi liquid corrections
due to the presence of the currents.

It is worth pointing out that expressions (9) and (10),
which describe energy transformation under the spin-
dependent boost (2), can also be written down in terms of

momentum and spin currents and are limiting forms of
more general transformation rules given in, e.g., [14].
Now we are in a position to find the equilibrium spin

polarization in the HQV state. Minimizing the energy
EBCS þ EFL with respect to Swe obtain that in equilibrium

S ¼ ðgS�BÞ�1�B; (11)

where � is the spin susceptibility of the system which, up
to terms of order ��1

F @
2=2m�R2, is the spin susceptibility of

the ESP state with Fermi liquid corrections; for 3He-A at
low temperatures the value of � is about 0.37 of the normal
state susceptibility [10]. The other quantity of interest in
Eq. (11), the Zeeman field B, has two contributions,

B ¼ Bþ Beff ; (12)

which are the external Zeeman field B and the effective
Zeeman field Beff caused by the presence of spin currents:

Beff ¼ � @
2ðgS�BÞ�1

2m�R2
‘sp‘s�f1þ F1=3þ Z1=12g: (13)

In thermal equilibrium the effective field is a periodic
function of the total flux � with period �0 and changes
its sign at flux values equal to half-integer number of
flux quanta. Since at least some of the constants entering
Eq. (13) are currently not known for Sr2RuO4, it is not
possible to give an accurate prediction of the field’s mag-
nitude. It is, however, of order ��1

B @
2=2mR2 ¼ �0=�R

2;
since the first HQV, if stable, exists at about the same value
of the external field, this means that the spin polarization
produced by the effective field is comparable to that in-
duced by the external field. It is this phenomenon which
may provide additional ways for the experimental detec-
tion of HQV. Its signature would be a sawtooth contribu-
tion given by Eq. (13), to the otherwise linear field
dependence of the Zeeman spin polarization.
Taking into account both types of spin polarization and

omitting the internal energy contribution [cf. the discussion
after Eq. (5)], the energy of the system E � hH i can be
written as

E ¼ � 1

2
�B2 þ @

2N

8mR2

�
‘2s� þ ‘2sp

1þ Z1=12

1þ F1=3

�
; (14)

where m is the bare particle mass related to m� by the
usual relation of Fermi liquid theory. For reasonable values
of the external field the contribution of the spin polar-
ization energy given by the first term on the right-hand
side of Eq. (14) relative to the total energy E is of order
@
2��1

F =2mR2 and thus can be safely ignored for the analy-
sis of the stability of HQV.
The region of stability of the HQV depends on

ð1þ Z1=12Þ=ð1þ F1=3Þ which is a zero-temperature
value for the ratio of spin superfluid and superfluid den-
sities �sp=�s [4]. The stability criterion found by direct

minimization of (14) yields the condition �sp=�s < 1 [15],

which is usually fulfilled. However, as has been pointed
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out by Chung et al. [8], the self-inductance effect, whose
treatment necessitates the use of the Gibbs potential (3)
constructed out of the energy (14), replaces this condition
with a much more stringent one. In particular, for a cylin-
drical annulus the stability of HQV requires that

�sp=�s < ð1þ Rd=2	2
LÞ�1; (15)

with 	L denoting the London penetration depth. The value
of �sp=�s in Sr2RuO4 is currently unknown; however,

condition (15) makes the existence of HQV in large rings
practically impossible.

The physical interpretation of the stability condition (15)
is quite transparent: While the electromagnetic currents
which accompany both the full and the half-quantum vor-
tex are well screened in the bulk, the spin currents which
are present only in the HQV are not, producing an addi-
tional energy cost over the full vortex. To mitigate such a
cost and make HQV stable, one needs to reduce the spin
current energy by reducing either spin superfluid density
�sp or the ‘‘effective volume’’ Rd=2	2

L over which the spin

currents flow such that the condition (15) is satisfied.
It is further to be remarked that in an annular geometry

where one does not have to deal with the vortex core, the
stability condition �sp=�s < 1 is still valid for a neutral

ESP superfluid such as 3He-A. In 3He-A the ratio �sp=�s is

known to be well below 1 for all temperatures below
critical, hence making the existence of HQV possible in
a large part of the phase diagram. By contrast, recent
numerical results [16] in a solid cylindrical geometry claim
that HQVexists only in a high field region and at tempera-
tures sufficiently close to the transition. We believe, how-
ever, that the narrowness of the region of HQV stability
obtained in [16] is due to the omission of the Fermi liquid
effects from the consideration.

The real-life question about the thermodynamic stability
of HQV is complicated and may depend on many factors
not included in the preceding discussion. Among these are
deviations from the annular geometry, inclusion of spin-
orbit interaction, and the possibility of the d vector lying in
the plane other than ab. It should however be emphasized
that once the HQV has been stabilized we do not expect our
qualitative conclusion about the presence of the spin po-
larization to be altered by the aforementioned factors since
this conclusion originates from one of the defining prop-
erties of the HQV, namely, velocity mismatch between
different spin components. This velocity mismatch shifts
the chemical potentials of up- and down-spin components
by an amount of order @2=mR2 which, in thermal equilib-
rium, produces an effective spin polarization.

In conclusion, we have shown that the thermal equilib-
rium state of the half-quantum vortex in the annular ge-
ometry should be spin polarized. This effective spin
polarization is a periodic function of flux and contributes
additively to the spin polarization induced by the external
Zeeman coupling. The magnitudes of the two contributions
are comparable, thus making the effect potentially observ-
able through, e.g., NMR measurements. This suggests a
new way for the experimental detection of half-quantum
vortices.
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