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For ab initio electronic structure calculations, the random-phase approximation to the correlation

energy is supposed to be a suitable complement to the exact exchange energy. We show that lattice

constants, atomization energies of solids, and adsorption energies on metal surfaces evaluated using this

approximation are in very good agreement with experiment. Since the method is fairly efficient and

handles ionic, metallic, and van der Waals bonded systems equally well, it is a very promising choice to

improve upon density functional theory calculations, without resorting to more demanding diffusion

Monte Carlo or quantum chemical methods.
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The many electron Schrödinger equation lies at the heart
of computational quantum chemistry, solid state physics,
and materials science, but unfortunately, the computational
complexity of the equation increases exponentially with
the number of particles. Scientists are faced with the
problem of finding accurate, but still tractable, methods
for approximating the Schrödinger equation. The most
favored method is presently density functional theory
(DFT) [1]. While formally scaling as N3 (where N char-
acterizes the system size), the computational costs often
increase only linearly for extended systems. Regrettably,
we have seen little progress in the development of DFT
functionals in recent years, with only incremental advances
since the seminal work of Becke and Perdew in the early
1990s [2–4], when generalized gradient corrections (GC)
and hybrid functionals that include a fixed fraction of exact
exchange were introduced. The most common practice to
mitigate the approximate nature of the available function-
als is to devise specialized DFT parametrizations that work
well for a selected class of problems, e.g., suitable gradient
corrected functionals accounting well for the lattice con-
stants and elastic properties of solids [5–7] or the afore-
mentioned hybrid functionals [8] describing most
semiconductors outstandingly well. Unfortunately, these
methods tend to worsen the description of other properties,
in the previous two cases, for instance, the description of
adsorption on metal surfaces [9]. Another problem not
addressed by GCs and hybrid functionals is the intrinsic
nonlocal nature of correlation, leading to long-range
van der Waals and Casimir forces [10]. Promising func-
tionals that handle this type of problem are presently
developed, but they are still in their infancy and so far
show only moderate success [11]. The question emerges
whether we really need to deal with all the complexity of
the many electron Schrödinger equation as it is done in the
diffusion Monte Carlo method [12] or some quantum
chemistry methods such as the coupled cluster approach
[13]. It goes without saying that these methods scale much
worse than DFT, e.g., at least like N4 (fixed-node diffusion

Monte Carlo method) or N7 [coupled cluster singles, dou-
bles, and perturbative triples [CCSD(T)]].
Any ‘‘good’’ approximate method should incorporate

(i) in a materials dependent fashion a screened nonlocal
exchange term and (ii) long-range dynamic correlation
effects. Hybrid functionals with fixed exact exchange are
a step in the right direction, and locally adjusting the
amount of exact exchange can be a solution to (i) [14].
Remarkably, a simple approximation to achieve both goals
has been known since at least 1958 [15]: the random-phase
approximation (RPA) to the correlation energy. The ex-
pression can be derived in many different ways, from
many-body Green function theory [16,17], using the
adiabatic-connection fluctuation-dissipation theorem
(ACFDT) [18,19], or from coupled cluster theory
[20,21]. Despite its promising features, the method has
not been applied systematically to extended systems, and
there is no consensus whether the RPA improves upon
available density functionals. Since efficient RPA imple-
mentations have become increasingly available for solids
[22–24] and molecular systems [21,25–27], it is timely to
access the overall quality of the RPA for solids and their
surfaces.
Our implementation relies on the ACFDT inspired for-

mulation of the RPA correlation energy. Neglecting any
exchangelike terms in the correlation energy Ec yields
(Coulomb or direct RPA)

Ec ¼
Z 1

0

d!

2�
Tr½lnð1� �0ði!ÞvÞ þ �0ði!Þv�; (1)

where the trace (Tr), the independent particle response
function �0, and the Coulomb kernel v are evaluated in a
suitable basis (plane waves in our case) at complex fre-
quencies i! (methodological details are discussed in
Ref. [24]). The matrix operations in Eq. (1) scale like
N3, whereas the evaluation of the response function re-
quires at most N4 operations [24], although N3 algorithms
are known [28]. This establishes that the method is in
principle favorably scaling. In practice, the evaluation of
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the response function is the main computational task, but
our present implementation achieves peak performance
and reaches a parallel efficiency of 90% on 100 CPU cores.

The independent particle response function, the correla-
tion energy Ec, and the exact exchange energy (EXX)
EEXX (Hartree-Fock energy) are all evaluated using
Kohn-Sham (KS) orbitals to yield the total ground-state
energy E ¼ EEXX þ Ec. All calculations presented here
were performed using the VASP code and suitably opti-
mized projector augmented wave (PAW) potentials that
describe high energy scattering properties very accurately
up to 100 eV above the vacuum level [29]. Only valence
orbitals were included in the calculation of the correlation
energy, whereas all orbitals were included in the EXX
energy. Tests performed by unfreezing core states or
changing the construction of the PAW potentials indicate
that the lattice constants are technically accurate to at least
0.2%–0.3% and cohesive energies to about 2%. Our calcu-
lations are fully converged with respect to the k points,
energy cutoffs, and with respect to the number of virtual
orbitals and follow the same strategy as outlined in
Ref. [24]. More details will be presented elsewhere [30].

Figure 1 shows the lattice constants for selected systems,
including ionic systems, semiconductors, and metals. As a
reference we also show local-density approximation
(LDA) and Perdew-Burke-Ernzerhof (PBE) [4] results, as
well as EXX results. The RPA and the EXX energies are
calculated using PBE orbitals, but results for the lattice
constants are practically identical for LDA orbitals. Since
the orbitals were not determined self-consistently for the
EXX case, the only difference between the EXX and the
RPA result is the inclusion of the correlation energy in the
RPA. As expected, LDA seriously underestimates the lat-
tice constants [mean relative error (MRE) �1:5%],
whereas PBE overestimates the lattice constants (MRE
0.9%). The PBE overestimation generally increases with

increasing mass (e.g., C ! Si, BP ! AlP), as also ob-
served in larger data sets [31]. EXX performs well for
covalently bonded systems, but errors show more scatter
around experiment than for DFT. Furthermore, the EXX
approximation exhibits huge errors for metals, with only
Rh, an open shell 4d metal, being an exception (covalent
4d-4d interaction). Bonding in metals and ionic systems
with heavier elements is clearly not handled well in the
EXX approximation. A self-consistent Hartree-Fock treat-
ment does not change this trend.
Inclusions of correlation in the RPA remedies these

problems entirely. In particular, for those materials where
EXX was yielding too small lattice constants, the lattice
constants increase (C, MgO, and Rh), whereas usually RPA
decreases them. The improvements for NaCl and the met-
als are in fact little short of spectacular. Note again that our
treatment includes full exact exchange, and RPA is the only
‘‘simple’’ but nonlocal correlation functional curing the
shortcomings of EXX [32].
The atomization energies shown in Fig. 2 confirm our

previous observations. The importance of correlation in-
creases with increasing polarizability [compare Eq. (1)]:
for the strongly polarizable metals correlation accounts for
more than 80% of the atomization energy, whereas weakly
polarizable insulators are well approximated by EXX. It is
remarkable that the results for open shell transition metals
are not much worse than for other metals, indicating that
the RPA correlation is a good approximation even for
systems that are considered to have at least some multi-
determinantal character. This suggests that the ground
states of the Pd and Rh metals are dominated by a single
Slater determinant, which is well represented by the Kohn-
Sham orbitals, dressed by double excited Slater determi-
nants, as assumed in the RPA.
However, even after inclusion of the RPA correlation

energy, the errors in the atomization energies remain fairly
large and amount to about 0.2–0.4 eV. This is worse than
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FIG. 1 (color online). Relative error (%) of the theoretical
lattice constants of insulators, semiconductors, and metals. The
experimental lattice constants are summarized in Ref. [33] and
have not been corrected for zero-point vibrational effects.
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FIG. 2 (color online). Atomization energies (eV=atom) eval-
uated from EXX and RPA, compared to experimental and DFT-
PBE values.
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for the PBE functional, which sometimes overestimates
and sometimes underestimates the atomization energies,
but gives a slightly smaller mean relative error. Similar
results were found for small molecules [25] (see also
H2-Cl2 results in Fig. 2). Hence, as a further benchmark,
we have evaluated the heats of formation for a small set of
systems, summarized in Table I. For the RPA, the forma-
tion energies agree well with experiment with similar or
smaller errors than for the atomization energies, suggesting
partial error cancellation. This is contrary to PBE, which
severely underbinds as a consequence of the overbinding of
the dimolecular species, whereas EXX yields too large
formation energies for the considered solids, since the
metals are too weakly bound. Astonishingly, LDA per-
forms almost on par with RPA, although it yields too large
atomization energies. In summary, among the considered
approximations, RPA seems to be best balanced with a
general slight tendency towards underbinding (atomization
energies, heats of formation, and lattice constants).

van der Waals bonded rare-gas solids have been con-
sidered in Ref. [24]. To determine how well the RPA
handles energy differences between covalent and
van der Waals bonded systems, we show the atomization
energy of graphite and diamond in Fig. 3. The first thing to
note is that the RPA predicts a 1=d4 behavior for the
graphite-graphite interlayer interaction (inset), as expected
for van der Waals interactions between sheets at medium
range [35], whereas neither EXX nor LDA and PBE are
able to describe the interaction even qualitatively. After
adding zero point corrections (11 meV in favor of graph-
ite), RPA predicts graphite and diamond to be exactly
degenerate in energy, whereas in experiment the graphite
structure is found to be more stable by � 5–20 meV. PBE
and EXX perform significantly worse, and incorrectly
predict diamond to be more stable by 140 and 180 meV
(zero point corrected), respectively.

As a representative surface science problem, we have
considered the interaction of CO with the Cu(111) surface
(Table II), where PBE yields too large adsorption energies
and the wrong site order, i.e., preference of the threefold
coordinated fcc site, whereas experiments clearly point
towards adsorption on top of a Cu atom [9,37,38]. Using
EXX only, we find no binding, whereas the RPA not only
predicts adsorption energies in good agreement with ex-
periment and high level quantum chemistry calculations
(CASPT2) but also recovers the correct site order [37].
In summary, for all cases we have yet considered,

EXXþ RPA is surpassing traditional density functionals.
It is important to understand why the RPA is fairly reliable,
and when we expect it to break down. The gist of RPA is to
approximate the response function of the interacting many
electron system by [25,39]

�RPA ¼ �0 þ �0v�0 þ �0v�0v�0 þ � � � : (2)

This is equivalent to including only direct symmetric terms
(bubbles or ring diagrams) in the diagrammatic expansion
of the correlation energy [17,21]. Consequently, the bare

TABLE I. Heats of formation at T ¼ 0 K in kJ=mol (per
formula unit) with respect to the elemental phases in their
normal state under ambient conditions. Experimental values
are collected in Ref. [33], if not otherwise stated, and have
been corrected for zero-point vibrations (ZPV) (experimental
values without corrections are in parentheses). The ZPV have
been evaluated using harmonic ab initio phonon calculations.

Solid PBE LDA EXX RPA Expt.

LiFa 570 613 664 609 619 (614)

NaF 522 558 607 567 577 (573)

NaCl 355 381 433 405 413 (411)

MgOa 516 595 587 577 604 (597)

MgH2
a 52 89 113 72 78 (68)

AlN 262 327 350 291 321 (313b)

SiC 51 54 69 64 69 (72)

abcc Li, hcp Mg, and rutile MgH2 were considered in their
experimental geometries, whereas for the other materials the
theoretical minimum energy geometries were used.
bRef. [34].
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FIG. 3 (color online). RPA atomization energy (eV=atom) of
diamond and graphite versus volume=atom. The experimental
equilibrium volumes and atomization energies are indicated by
black diamonds and black triangles. The experimental values are
shifted upwards by 0.3 eV. The inset shows the RPA correlation
energy of graphite versus 1=d4, where d is the graphite interlayer
distance.

TABLE II. CO adsorption energy on Cu(111) for a 2� 2
supercell with 4 layers. A cluster based RPA approach yields
�0:35 eV for atop adsorption [27].

PBE EXX RPA CASPT2b Expt.a

Top �0:68 � 0:90 �0:42 �0:49 �0:49
fcc �0:82 � 1:80 �0:30 >0

aRef. [36].
bRef. [37].
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exchange interaction is replaced by a frequency dependent
screened exchange interaction [v ! vð1þ �RPAvÞ] [16].
The main reason for the success must be that the RPA
response function �RPA evaluated using KS orbitals cap-
tures important features of the ‘‘real’’ many-body interact-
ing response function. This agreement can only be partial,
since DFT gives unreliable results for the optical transition
energies [poles in �ð!Þ], but these are not directly relevant
for the correlation energy, which is hinted at by the com-
plex frequency integration in Eq. (1). In fact, using KS
orbitals, the RPA reproduces static experimental polariz-
abilities quite well, essentially because static properties are
ground-state properties. We have argued that this is the
main reason why quasiparticle energies are so well ap-
proximated using the RPA G0W0 approximation [40], and
obviously the same applies to correlation energies. The
most serious remaining shortcoming is that the RPA ne-
glects all antisymmetric terms in the diagrammatic expan-
sion of Ec and is therefore not self-correlation free.
Although the self-correlation error seems to drop out, in
particular for heats of formation and lattice constants and
to a lesser extent for atomization energies, the antisym-
metric terms reduce the absolute correlation energies by
about 30% [20]. One can attempt to approximate these
terms by a local approximation as done in the RPAþ, but in
practice, we and others [25] found the RPAþ to worsen
agreement with experiment. Explicitly evaluating these
terms is a very expensive, but much better approximation,
which makes the RPA self-correlation free and generally
increases the binding and resultantly cures the main errors
of the RPA [41].

In conclusion, we expect the RPA correlation energies to
be reliable if the static RPA polarizabilities are. This covers
a large range of solid state and molecular systems. The
method applied here is a serious contender for routine
calculations between traditional DFT methods and full
quantum Monte Carlo calculations. Since it seamlessly
incorporates van der Waals interactions, but also describes
ionic bonding, covalent and metallic bonding, including d
metal bonding, it is universally applicable to solids, mole-
cules, and biological systems. The RPA might also be
suitable for a numerical description of Casimir forces at
short distances where microscopic details matter.
Furthermore, we hope this work inspires the development
of more approximate nonlocal density functionals that rely
on a description of the correlation energy in the RPA.
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