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We study the Wigner crystal melting in a two-dimensional quantum system of distinguishable particles

interacting via the 1=r Coulomb potential. We use quantum Monte Carlo methods to calculate its phase

diagram, locate the Wigner crystal region, and analyze its instabilities towards the liquid phase. We

discuss the role of quantum effects in the critical behavior of the system, and compare our numerical

results with the classical theory of melting, and the microemulsion theory of frustrated Coulomb systems.

We find a Pomeranchuk effect much larger then in solid helium. In addition, we find that the exponent for

the algebraic decay of the hexatic phase differs significantly from the Kosterilitz-Thouless theory of

melting. We search for the existence of mesoscopic phases and find evidence of metastable bubbles but no

mesoscopic phase that is stable in equilibrium.
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The Wigner crystal (WC) melting has been a subject of
intense study over the years [1–3]. A better understanding
of this process is particularly important in the two-
dimensional (2D) one component plasma (OCP) with 1=r
Coulomb interactions, since it could explain many features
in systems such as electrons at interfaces, dusty plasmas,
metal-oxide-semiconductor field-effect transistors
(MOSFETs), and charged colloids.

Although in 2D, a true crystalline order is not possible at
any finite temperature T [4], a quasi–long-range transla-
tional order is stable at strong coupling. Upon melting from
the WC a variety of mechanisms have been proposed [1].
At high temperature, Halperin and Nelson [5] suggested
that the 2D melting is a two-step process, with a hexatic
phase in between. Hexatic phases have been seen in col-
loids, liquid crystals, and dusty plasmas [6], and found in
some classical simulations [7,8]. However, there is dis-
agreement about its location, critical exponents, and order.
The influence of quantum effects is unclear.

In the ground state, Jamei et al. [9] argue by a mean-field
approach that a first order WC-liquid transition at zero
temperature is disallowed; instead the transition is medi-
ated by microemulsion phases (e.g., stripes or bubbles).
This mechanism might be related to the stripe order in
some strongly correlated materials and anomalous effects
in experiments on MOSFETs [10].

In this Letter, we examine a 2D system of N quantum
distinguishable (Boltzmannon) particles that interact with
a Hamiltonian:

H ¼ � 1

r2s

X
i

r2
i þ

X
i<j

2

rsjri � rjj þ Vbg; (1)

where ri is the location of the ith particle. The system is
parametrized by two dimensionless parameters which we
choose to be rs and T. We use a ¼ rsa0 as the unit of
length, with a0 the Bohr radius, Rydberg as the unit of

energy, and temperature; the density is 1=�ðrsa0Þ2. The
system is neutralized by a rigid homogeneous background,
which gives rise to the constant Vbg. Our goal is to map out

the phase diagram, to locate the WC phase boundaries, and
to analyze the transition to the liquid. To do so, we use
quantum Monte Carlo (QMC) techniques, which are
uniquely suited for calculations of the properties of
strongly coupled Coulomb systems.
At finite temperature, we use path integral Monte Carlo

(PIMC) [11], to sample configurations from the thermal
density matrix. In contrast to fermion systems, for a system
of distinguishable particles, there is no sign problem. All
systematic errors, such as the time step and finite size
errors, can be studied with extrapolation [12]. Our calcu-
lations involve approximately 100 phase points at a system
ranging from 200 to 2248 particles and between 10 and
8000 slices in imaginary time.
At T ¼ 0, we use diffusion Monte Carlo (DMC), a

projector method that takes as input a trial wave function
�T , and filters from it, all excited states. Calculating DMC
energies in this system is formally exact as long as �T has
a nonzero overlap with the ground state.
General properties of the phase diagram.—Our pro-

posed phase diagram is shown in Fig. 1. The boundary
between the WC and the liquid phase presents a clear
reentrant behavior at low T. Although such behavior has
been seen in helium [13,14], for the 2D-OCP the effect is
significantly stronger. We find the ratio between the mini-
mal and maximal density of the crystal 0.6 compared to
0.03 for He3 and 3� 10�5 for He4. The reentrant liquid
terminates in a zero temperature quantum critical point
(QCP) at rs ’ 66:5� 0:2. This differs by 10% from pre-
vious DMC simulations [15]; our calculations did a more
careful extrapolation to the thermodynamic limit [16].
At large rs we compare our results with simulations

done for the classical OCP; classical simulations found a
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WC phase stable for �> 140 and a liquid phase stable for
�< 120 [8], where � ¼ 2=rsT. Seen as lines in Fig. 1,
these values compare favorably with our results at large rs.
For 120 � � � 140, we found a hexatic quasi–long-range
order; this order extends into the quantum regime by
bending with respect to the classical line as the density is
increased (i.e., for rs < 200).

At rs ’ 60 the melting temperature decreases until it
reaches a tricritical point (TCP), located at rs ’ 50 and T ’
80 �Ry, where the isotropic liquid, the hexatic phase, and
the WC coexist. We have used the Clausius-Clapeyron
relation to understand this behavior. For Coulomb systems
it reads [17]:

dT

dð1=rsÞ ¼ 2

�

�K þ �U

�U
; (2)

where �U ¼ Uc �Uh and �K ¼ Kc � Kh are the changes
in the internal and kinetic energies between the crystal (Uc,
Kc) and hexatic (Uh, Kh) phase. The slope is shown in
Fig. 2. At the downturn, the slope is zero, while it diverges
at the TCP, where the entropy difference, and hence �U,
goes to zero. In fact, Eq. (2) shows that a first order line for
any Coulomb system, must become second order at the
nose of a reentrant phase.

There are two WC-to-liquid boundaries: the quantum
melting line, going from the QCP to the TCP, and the
thermal melting line, flowing from the high temperature
side of the TCP towards lower density (large rs), and
characterized by a two-step process mediated by a hexatic
phase. The order of the phase transitions is established by
examining the internal energy per particle U ¼ UðTÞ at a

series of densities rs 2 ð48; 400Þ through a wide range of
temperatures. The behavior at rs ¼ 55 is shown in Fig. 3. A
second order (or weakly first order) phase transition is
evident for the quantum melting line, indicated by a kink
in the internal energy when moving from the reentrant
liquid phase to the WC. Increasing the temperature, UðTÞ
shows a sharp jump at the boundary between the solid and
hexatic phase, indicating a first order WC-hexatic transi-
tion. The internal energy is continuous between the hexatic
phase and the liquid, indicating a continuous hexatic-liquid
transition. This is in disagreement with the classical theory
of melting, which suggests two continuous transitions of
Kosterlitz-Thouless (KT) type. It should be noted that as
one approaches the classical limit, rs (�400), the jump in
energy shrinks and becomes barely distinguishable from a
continuous transition.
Thermal melting line.—The thermal melting line is char-

acterized by the presence of a hexatic intermediate phase
with an order parameter:

g6ðrÞ ¼
�X

ij

��ðriÞ�ðrjÞ�ððjri � rjjÞ � rÞ
�
; (3)
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FIG. 2 (color online). dT=dð1=rsÞ vs 1=rs computed using the
Clausius-Clapeyron relation, Eq. (2) for N ¼ 562, compared
with the results obtained directly from the phase diagram in
Fig. 1 for the first order WC-to-hexatic boundary.
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FIG. 3 (color online). Internal energy per particle versus tem-
perature at rs ¼ 55 for N ¼ 562. The inset plots both the
number of defects and the internal energy scaled to arbitrary
units and shifted.

FIG. 1 (color online). Phase diagram of the quantum 2D
Coulomb system calculated using QMC simulations as obtained
by analyzing correlation functions. Points indicate the location
of QMC calculations. The phase boundaries are interpolations
between these points. The dotted blue line indicates a rough
separation between the classical and the quantum regions: when
the thermal de Broglie wavelength equals the interparticle spac-
ing. The solid straight blue lines are the classical results of
Ref. [8]. The inset is a density profile of the metastable bubbles
seen in PIMC.
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where �ðriÞ ¼ 1
6

P
hji expð6i�ijÞ; the summation is over

nearest neighbor particles j surrounding i [18], and �ij is

the angle between an arbitrary fixed vector and the vector
joining ri to rj. The algebraic decay of g6ðrÞ signals a

quasi–long-range orientational order and this, combined
with a lack of translational order, defines the hexatic phase.
Additionally, the orientational order of the hexatic phase
manifests itself via a sixfold anisotropy in the structure
factor SðkÞ. Figure 4 shows the behavior of the SðkÞ in the
liquid, solid, and hexatic phases at rs ¼ 55, and g6ðrÞ as a
function of temperature. There is a clear qualitative change
in the decay of g6ðrÞ for 156:2 �Ry � T � 150:3 �Ry, as
we transition from the liquid to the hexatic phase.

The KT theory predicts that for hexatic systems in the
XY universality class g6ðrÞ / r��6 , with �6 � 1=4, and �6

reaching its maximum 1=4 at the transition to the liquid.
We fit the large distance values of g6ðrÞ, to determine �6

and found that, independent of temperature, it undergoes
the hexatic-to-liquid transition for �6 ’ 2. The disagree-
ment with the KT theory is likely due to the 1=r interac-
tion. Indeed, critical exponents in other models, for
example, the Ising model, are known to be strongly af-
fected by the range of the interaction [19].
Defects play an important role in 2D melting. We define

defects using a Voronoi construction of each particle’s
centroid. In a perfect hexagonal lattice, each centroid has
six neighbors. Defective centroids, say with 5 or 7 neigh-
bors, are denoted as vortices and antivortices, respectively.
According to the KT theory the WC-hexatic transition is
caused by the unbinding of dislocations (particles defined
as strongly bound vortex-antivortex pair), while the
hexatic-liquid transition is driven by the vortex-antivortex
unbinding. However, important differences are found in
our system. At the verge of the WC melting, instead of the
expected continuous rise of dislocations, the number of
defects jumps discontinuously. We see a strong correlation
between the energy and the number of defects; UðTÞ in the
hexatic and solid phases is controlled entirely by their
number. Therefore, the first order jump seen in UðTÞ at
the WC-hexatic transition is due to the proliferation of
dislocations in the system, which can be induced by grain
boundaries [20,21], present in the WC phase. The inset of
Fig. 3 shows this proportionality by plotting both the defect
number and the energy of the various phases on the same
axis, with theUðTÞ scaled to arbitrary units and shifted. We
note that the first order transition in a long-range system is
unconventional because the presence of the background
does not allow macroscopic separation of phases with
different densities. In the hexatic-liquid transition, the
number of defects grows slowly while the energy of the
system rises at a much faster rate suggesting the presence
of an unbinding process possibly related to the vortex-
antivortex melting [5].
Quantum melting line.—The quantum melting line goes

from the QCP to the TCP. Jamei et al. [9] and Ortix et al.
[22] showed recently by a mean-field Hamiltonian that the
system undergoes a WC-liquid transition at T ¼ 0 through
a sequence of intermediate phases such as stripes, or other
‘‘microemulsion phases.’’ Their shape and size depend on
the parameters of the mean-field Hamiltonian. At the criti-
cal density rcs , where the free energy of the crystal equals
that of the liquid, the optimal geometry is found to be
alternating liquid and crystal stripes of width W0 ¼
a expð�Þ, with a a lattice cutoff proportional to the mean
interparticle spacing, � ¼ 4�2e2�=��2

c, where � is the
surface tension, and ��c ¼ �crysðrcsÞ ��liqðrcsÞ the

chemical potential difference between the crystal and liq-
uid at criticality.
At finite T, our PIMC results suggest a second order (or

very weakly first order) direct transition. We carefully
searched for mesoscopic phases in the surrounding region.

FIG. 4 (color online). Top: g6ðrÞ at different temperatures for
rs ¼ 55, N ¼ 2248. The lower two temperatures show algebraic
decay while the higher temperatures decay faster than algebrai-
cally. Middle: �6ðTÞ in the hexatic phase for N ¼ 562 at various
temperatures and densities (for rs values, see legend on figure).
All exponents satisfy �6 & 2 (shown as dotted line). Bottom:
Sðkx;kyÞ in a liquid, hexatic, and solid, respectively, for rs ¼
55, N ¼ 562, temperatures in caption.
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At rs � 55, where the transition temperature to the re-
entrant liquid is relatively high (T ’ 50 �Ry), we find no
evidence for mesoscopic phases. At larger rs and, hence,
lower transition temperature, the PIMC simulations occa-
sionally yield inhomogeneous phases. A density profile of
such a phase is shown in the inset of Fig. 1. However, those
inhomogeneous structures appear to be metastable be
cause their internal energy, measured in PIMC at low T
(<10 �Ry) and DMC at T ¼ 0, is always higher than the
homogeneous phases. To clarify this situation, we per-
formed additional DMC simulations to determine the pa-
rameters of the mean-field model. In the liquid phase, we
used a pair product or Jastrow trial function �liquid ¼Q

i<j exp½�uRPAðjri � rjjÞ�, with uRPA the RPA Jastrow

function [23]. For the solid and stripe phase we multiplied
by a Gaussian, tying the distinguishable particles to pre-
defined sites, fIig arranged to correspond to a crystal or
stripe: �crystal ¼ �liquid exp½�

P
i�jri � Iij2�. We fit the

T ¼ 0 liquid and crystal energies to a polynomial and,
assuming the transition is weakly first order, obtain rcs ¼
66:5� 0:2 and ��c ¼ 65� 5 �Ry.

We estimate the surface tension � by computing the
energy at rcs for a different number of stripes [24], and
hence different surface length in the system: �stripe ¼
1:55� 0:09 �Ry=a0. Plugging �stripe and ��c in the

equation for � gives � � 3� 105, which leads to the width

of the stripes at the critical point of W0 � 1010
5
: much

larger than any physical system. The large widths are a
result of very small difference in the chemical potential
between the homogeneous liquid and crystal phases at the
QCP, characteristic of the 1=r interaction. Away from rcs ,
the periodicity of the alternating stripes will become even
larger. Therefore, the instability towards ‘‘microemulsion
phases’’ has a characteristic emergent length W0 so large
that it cannot explain non-Fermi liquid behavior seen in 2D
experimental setups [10].

The phase diagram for bosons and fermions will be
different; however, the microemulsion theory of the 2D
WC melting [9,22] does not refer to the particle statistics;
hence our calculation is relevant to assess its validity.

Conclusion.—We have studied the WC melting in the
2D quantum Coulomb system of particles with Boltzmann
statistics. Its phase diagram shows thermal and quantum
melting. The thermal melting is mediated by a hexatic
phase, but significant deviations from the classical KT
theory are found. The WC-hexatic transition is first order,
driven by the proliferations of defects in the crystal, where
they are assembled into grain boundaries. The hexatic
parameter �6 � 2 belongs to the universality class of
long-range models and reveals the importance of the
long-range interaction in determining the transition prop-
erties. In the low temperature region, we found a strong
Pomeranchuck effect, much larger than for solid helium.
At low temperatures, we did not find stable microemulsion
phases. An estimate of their size is exceedingly large,

which makes this kind of phase impossible to see in any
physical system if driven by correlation effects only.
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Centre de Physique Théorique of the Ecole Polytechnique.
Supercomputer calculations were done at the NCSA. We
would like to thank also Frank Kruger for his careful
reading and John A. Goree and Yu. E. Lozovik for useful
discussions.

[1] K. J. Strandburg, Rev. Mod. Phys. 60, 161 (1988).
[2] K. Wierschem and E. Manousakis, Int. J. Mod. Phys. B 20,

2667 (2006).
[3] C. Mora, O. Parcollet, and X. Waintal, Phys. Rev. B 76,

064511 (2007).
[4] B. Jancovici, Phys. Rev. Lett. 19, 20 (1967).
[5] D. R. Nelson and B. I. Halperin, Phys. Rev. B 19, 2457

(1979).
[6] R. A. Quinn and J. Goree, Phys. Rev. E 64, 051404 (2001);

H. H. von Grünberg, P. Keim, K. Zahn, and G. Maret,
Phys. Rev. Lett. 93, 255703 (2004); X. H. Zheng and R.
Grieve, Phys. Rev. B 73, 064205 (2006).

[7] W. J. He, T. Cui, Y.M. Ma, Z.M. Liu, and G. T. Zou, Phys.
Rev. B 68, 195104 (2003).

[8] S. Muto and H. Aoki, Phys. Rev. B 59, 14 911 (1999).
[9] R. Jamei, S. Kivelson, and B. Spivak, Phys. Rev. Lett. 94,

056805 (2005).
[10] E. Abrahams, S. V. Kravchenko, and M. P. Sarachik, Rev.

Mod. Phys. 73, 251 (2001).
[11] D.M. Ceperley, Rev. Mod. Phys. 67, 279 (1995).
[12] Most of the path integral calculations were done using the

pair action approximation of the diagonal and with a time
step 	 ¼ 50. A study of time step error indicates that the
forms of the phases as well as differences in energy have
converged.

[13] I. Pomeranchuk, Zh. Eksp. Teor. Fiz. 20, 919 (1950).
[14] L. Goldstein, Phys. Rev. Lett. 5, 104 (1960).
[15] S. De Palo, S. Conti, and S. Moroni, Phys. Rev. B 69,

035109 (2004).
[16] S. Chiesa, D.M. Ceperley, R.M. Martin, and Markus

Holzmann, Phys. Rev. Lett. 97, 076404 (2006).
[17] M.D. Jones and D.M. Ceperley, Phys. Rev. Lett. 76, 4572

(1996).
[18] Nearest neighbors to i are all particles j with jri � rjj<

2:54.
[19] E. Luijten and H.W. J. Blöte, Phys. Rev. Lett. 89, 025703
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