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The dynamics of cracks propagating in elastic inhomogeneous materials is investigated experimentally.

The variations of the average crack velocity with the external driving force are measured for a brittle rock

and shown to display two distinct regimes: an exponential law characteristic of subcritical propagation at a

low driving force and a power law above a critical threshold. This behavior can be explained quantitatively

by extending linear elastic fracture mechanics to disordered systems. In this description, the motion of a

crack is analogous to the one of an elastic line driven in a random medium, and critical failure occurs

when the external force is sufficiently large to depin the crack front from the heterogeneities of the

material.
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The failure of inhomogeneous materials has been a very
active field of research during the past decades (see Ref. [1]
for a recent review). A great deal of research effort in this
field has been dedicated to the study of fluctuations: fluc-
tuations of velocity around the average motion of cracks
when the studies were devoted to their highly intermittent
dynamics [2,3] or variations to a straight trajectory when
the works were dedicated to the rough geometry of fracture
surfaces [4]. In both cases, these fluctuations were shown
to display remarkably robust properties suggesting that
crack propagation in disordered systems could be de-
scribed in a general manner by relatively simple statistical
models able to capture the competition between the two
antagonist effects occurring during the failure of inhomo-
geneous materials: disorder and elasticity.

Very recently, the main statistical features of the fluctu-
ations of both the trajectory and velocity for cracks prop-
agating in brittle materials were captured by stochastic
models of elastic lines driven in random media [5,6] that
mimic the motion of cracks through the microstructural
disorder of materials. However, the relevance of this theo-
retical framework for fracture problems is still a matter of
debate: On the one hand, the ability of these models to
describe the average behavior of the crack such as its mean
velocity, or the critical external loading at failure, more
interesting from a mechanical or an engineering point of
view, is still an open question. On the other hand, a direct
experimental observation of the critical dynamic transition
from a crack pinned by the heterogeneities of the material
(v ¼ 0) to a propagating crack (v > 0) as predicted by this
theory at the onset of material failure (driving force G ¼
Gc) is still lacking. The investigation of this depinning
transition on an experimental example is the central point
of this Letter.

The variations of the average crack velocity with the
external driving force or elastic energy release rate G are
measured for a brittle rock. They are shown to exhibit two

distinct regimes, characteristic of a thermally activated
process below the threshold Gc, and a critical failure at
larger driving force G>Gc. This behavior is fully cap-
tured by a stochastic model rigorously derived from frac-
ture mechanics extended to inhomogeneous systems where
crack propagation is analogous to the motion of an elastic
line driven in a random medium.
System and setup.—Sandstone is chosen as an archetype

of heterogeneous elastic materials. A Botucatu sandstone,
extracted in the central region of Brazil, has been used for
the experiments. It is made of quartz grains with a diameter
d ¼ 230� 30 �m and a porosity � ¼ 17� 2%, that re-
sults in highly inhomogeneous mechanical properties at the
grain scale. This South American rock is consolidated
thanks to an iron oxide cement providing to the rock a
red coloration. As a result, its fracture energy Gc ’
140 Jm�2 as measured in the following is relatively high
compared to other sandstones [7]. Its intrinsic tensile
strength measured by splitting cylinders submitted to uni-
axial compression [8] is found to be �Y ¼ 75� 20 MPa,
while its Young’s modulus is found to be E ¼ 25� 1 GPa.
This leads to an estimate of the size of the process zone
next to the crack tip where damage and dissipative pro-

FIG. 1 (color online). Experimental setup. (a) Sketch of the
tapered double cantilever beam geometry; (b) picture of the
specimen during crack propagation.
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cesses are localized: ‘PZ ¼ �
8

GcE
�2
Y

’ 250 �m [9]. The com-

parison with the grain size d ’ ‘PZ suggests that crack
propagation in the Botucatu rock can almost be assimilated
to the motion of a crack in an ideal brittle material where
the quartz grains play the role of the basic microstructural
feature.

A new experimental setup has been developed in order
to measure variations of crack velocity from slow to very
fast propagation in brittle materials. Contrary to the torsion
tests classically used to measure the vðGÞ curves in rocks
[7,10], the tapered double cantilever beam specimens used
in the experiments [Fig. 1(a)] result in a slight and con-
trolled acceleration of the crack produced by the tapered
shape of the samples. As a consequence, it is possible to
measure crack velocities up to v ’ 1 m s�1 not achieved
by classical fracture tests. In addition, the external tensile
loading produces relatively straight crack fronts, allowing
a simple interpretation of the experiments. Finally, a
straight crack propagation is obtained without lateral guide
grooves that produce generally a large scattering of the
experimental vðGÞ curves [10].

An initial notch c0 ¼ 35 mm is machined in 100 mm
long samples with thickness e ¼ 30 mm. They are sub-
mitted to a uniaxial traction by increasing the displacement
�F ¼ vextt at the velocity 0:2 �ms�1 � vext � 4 �ms�1

between two rods previously inserted in the drilled speci-
mens. The experiments are performed at room temperature
with a humidity of 75%� 5%. During the test, a force
gauge measures the applied tension F while a clip gauge
measures the opening displacement � between the two lips
of the crack with a precision of 100 nm [see Fig. 1(b)]. A
typical force-crack opening displacement curve obtained
during a fracture test of a Botucatu specimen is presented
in Fig. 2.

The initial linear part of the curve—prior crack initia-
tion—allows for an estimation of the Young’s modulus
E ¼ 25� 1 GPa of the sandstone, in agreement with the

value obtained from the measurement of its compressive
and shear wave speeds. After crack initiation, the average
position of the crack front c ¼ hcðzÞiz is measured using
finite element (FE) simulations of an elastic specimen in
the same geometry: We run several simulations with vari-
ous values of the crack length c to measure the variations of
the specimen compliance �FEðcÞ. This function is then
compared to the experimental compliance �ðtÞ ¼ �=F in
order to measure the crack length cðtÞ at each time step t.
The variations of cðtÞ obtained by this method are repre-
sented in inset in Fig. 2. To validate our approach, we have
also measured the position of the crack tip at the sample
free surface using two other techniques: The increase in
resistance of a thin conductive film deposited on the sam-
ple side (potential drop method) is related to c, while
snapshots of the propagating crack observed from the
side of the sample are recorded and analyzed. Both meth-
ods confirm the results obtained from the FE-based tech-
nique, providing, however, less precise measurements.
From the evolution of the crack length, it is now possible

to measure the crack speed v ¼ dc
dt as well as the driving

force G imposed to the system during the test. Using the
load-displacement curve to measure the work �W of the
tensile machine during the span �t, one gets GðtÞ ¼

�WðtÞ
e½cðtþ�tÞ�cðtÞ� [11]. On the other hand, the driving force is

estimated independently using the relation GðtÞ ¼
½FðtÞ�2gFE½cðtÞ�, where the geometrical part gFE of the
energy release rate is provided by the FE simulations.
Both methods lead to similar results within 2%.
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FIG. 2. Mechanical behavior of the specimen. Typical load-
crack opening displacement curve; (inset) corresponding evolu-
tion of the average position of the crack front.
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FIG. 3 (color online). Average dynamics of a crack propagat-
ing in Botucatu sandstone. The variations of the crack velocity
are plotted in logarithmic scale with respect to the crack driving
force. The subcritical regime G<Gc, with Gc ¼ 140 Jm�2, is
studied in the top-left inset. The solid line corresponds to the best
fit of the data in v� e�C=ðG�h�iÞ� , with � ¼ 0:60 obtained for
h�i ¼ 65 Jm�2. The bottom right inset shows the velocity
variations with the net loading G�Gc in a logarithm represen-
tation for G>Gc. The straight line corresponds to a power law
fit with exponent � ¼ 0:80.
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Experimental results.—The variations of the crack ve-
locity with the driving force as observed on the sandstone
specimens are represented in Fig. 3 in semilogarithmic
coordinates. Velocity measurements are achieved over al-
most 5 orders of magnitude, corresponding to a relatively
small variation of the driving force. Irrespective of the
external loading rate vext, the failure behavior of the rock
is found to be systematically characterized by two very
different regimes defining Gc. Near but above this critical
loading, a slight change in the driving force results in a
strong variation in the crack velocity. This high sensitivity
is studied in more detail in the bottom right inset in Fig. 3,
where v is plotted as a function of the net driving force
G�Gc in logarithmic coordinates. The linear behavior in
this representation suggests a power law variation of the
crack velocity v� ðG�GcÞ�, with Gc ¼ 140� 3 Jm�2

and � ¼ 0:80� 0:15.
The variations of velocity at driving forces G<Gc are

now studied. Contrary to the previous regime, slow crack
propagation in rocks has been largely investigated and
shown to depend crucially on the temperature [7,10].

Analytical forms such as v� e�ðE�=kBTÞGn=2 [12] or v�
e�ðE0�bGÞ=kBT [13] are usually used to describe the experi-
mental data. Both formulas reproduce correctly the mea-
surements reported here as far as G< 120 Jm�2. The first
one, largely used because of its rather simple and compact
form characterized by one subcritical crack growth index,
leads to n ’ 34 that compares well with the other experi-
mental findings for sandstone [7]. The second formula
leads to b ’ 0:68� 10�20 m2, which is also in agreement
with the other measurements made on rocks with a similar
microstructure [10]. This last description is based on the

Arrhenius law v� e�ðEa=kBTÞ, where the activation energy
Ea ¼ E0 � bG represents the typical barrier along the
energy landscape tilted by the external forceG. Thus, large
values of G corresponding to high tensile forces increase
the probability of bond rupture by thermal activated pro-
cesses, such as, e.g., thermal stress fluctuations [14] and
chemical reactions [15]. However, this theoretical ap-
proach supposes that the typical energy barrier remains
independent of the geometry of the crack front. This as-
sumption is perfectly fair as far as one considers the motion
of a crack tip in a 2D medium, but, in the more realistic
situation of a 3D inhomogeneous material, the crack line
can take advantage of the material elasticity to deform and
explore an energy landscape rather different from the raw
fluctuations produced by the material heterogeneities. In
this context, one can show that Ea � ðG� h�iÞ��, with
� ’ 0:60 as justified in the next section. The Arrhenius law

v� e�ðEa=kBTÞ provides then a good description of the
experimental data for the full subcritical regime G<Gc

as shown in Fig. 3. The upper left inset represents the best
fit obtained for h�i ¼ 65� 5 Jm�2.

Discussion.—The observation of two very different re-
gimes with an exponential variation of v with the external
driving force for G<Gc and a power law behavior for

G>Gc reveals a fundamental aspect of the dynamics of
cracks propagating in brittle inhomogeneous media. Let us
derive an equation of motion for the crack to understand
more quantitatively this behavior. As a starting point, we
assume that the local velocity vðMÞ of a pointM along the
crack front is proportional to the excess of energy GðMÞ �
�ðMÞ locally released by the system, where � refers to the
local fracture energy. This corresponds to a damped dy-
namics where the inertial effects are neglected. In a dis-
ordered material such as sandstone, the fracture energy can
be described as a stochastic field �ðMÞ ¼ h�i þ ���ðMÞ,
where � is a short range correlated random term with zero
mean value and unit second order moment. These material
heterogeneities induce perturbations of the crack front—
parallel in average to the z axis and propagating along the x
axis—both in the mean fracture plane ðx; zÞ [in-plane per-
turbations cðz; tÞ � hcðz; tÞiz] and in the perpendicular di-
rection y [out-of-plane perturbations hðz; tÞ]. They in turn
lead to variations in the local value of the external driving
force GðMÞ. Interestingly, for small perturbations, GðMÞ
depends only on the in-plane deviations of the crack front

[16] and is given by Gðz; tÞ ¼ Gþ G
�

R1
�1

cðz0;tÞ�cðz;tÞ
ðz0�zÞ2 dz0

[17], where G refers to the macroscopic driving force
applied by the tensile machine to the specimen. Using
the previous expressions of the local driving force and
fracture energy, one gets the equation of motion for a crack
front propagating in a 3D brittle inhomogeneous material:

@c

@t

��������z;t
� ðG� h�iÞ þG

�

Z 1

�1
cðz0; tÞ � cðz; tÞ

ðz0 � zÞ2 dz0

þ ���ðc; h; zÞ: (1)

As the out-of-plane perturbations h behave independently
of c, the stochastic term in Eq. (1) is analogous to a 2D
random potential depending only on c and z. Therefore, the
crack motion is described by an equation of pinning of an
elastic line driven in a random medium comparable to the
one proposed in the context of interfacial cracks propagat-
ing in inhomogeneous weak planes [18]: If the driving
force G exceeds the threshold

Gc ’ h�i þ �ð��Þ2=h�i; (2)

the crack propagates, while the front is pinned by the
material heterogeneities if G<Gc [19]. Note that the
effective fracture energyGc is larger than the average value
h�i of the local fracture energy. Above the threshold, the
mean velocity v of the crack front is expected to scale as
ðG�GcÞ�, where � is called the velocity exponent.
Equation (1) has been studied using functional renormal-
ization group techniques [20,21], providing � ¼ 0:78 and
� ¼ 0:59 to first and second order in perturbation, respec-
tively. Recent direct numerical simulations resulted in � ’
0:63 [22]. As a consequence, the power law behavior
measured experimentally with exponent � ’ 0:80 suggests
that a depinning transition from a pinned to a moving crack
as described in Eq. (1) occurs atG ¼ Gc. Note that such an
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interpretation of the failure of inhomogeneous materials
had already been suggested by experiments made on other
kinds of materials for which damage processes play a
crucial role, preventing a quantitative comparison with
the predictions of linear elastic fracture mechanics [23].

Below the threshold at zero temperature, the external
driving force is too low, and the crack front is pinned by the
material heterogeneities. However, at room temperature,
thermally activated processes can enable a subcritical
propagation. In this regime, described by adding an an-
nealed noise �Tðz; tÞ to Eq. (1), one expects also a collec-
tive motion of the line characteristic of glassy systems, and

the velocity is given by v� e�ð‘=�Þ1þ�½h�i1þ�=kBTðG�h�iÞ��,
where � ’ 0:60 for long-range elasticity [24]. This so-
called creep law, first proposed for the subcritical crack
dynamics in Ref. [25] and then observed in the context of
paper peeling [3], describes rather well the experimental
measurements presented here over the whole range of
subcritical loadings G<Gc. This leads to activation en-

ergies in the range Ea ¼ ‘2

�1þ�
h�i1þ�

ðG�h�iÞ� ’ 0:20–0:35 eV,

1 order of magnitude larger than the thermal energy kBT.
Interestingly, this expression provides an estimate of the
topothesy—size of the basic feature of the perturbed crack
front—‘ ’ 0:1 nm, compatible with the interatomic dis-
tance. This suggests that thermally activated crack propa-
gation and critical failure might involve processes defined
at two very different length scales: atomic and grain size,
respectively. Finally, let us note that using Eq. (2), the
experimental values of the critical driving force Gc and
the average fracture energy h�i allow one to estimate

the normalized fluctuations ��
h�i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðGc � h�iÞ=�h�ip ¼
0:61� 0:04 of fracture energy in the Botucatu rock,
slightly larger but comparable with an estimate of this

quantity
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=ð1��Þp ’ 0:5 for an ideal porous material

made of an homogeneous solid with constant fracture
energy and voids, with volume fractions 1�� ¼ 0:83
and � ¼ 0:17, respectively.

Conclusion.—The average dynamics of a crack propa-
gating in a brittle inhomogeneous rock has been experi-
mentally investigated. The velocity variations with the
crack driving force display two very different regimes:
Above a threshold Gc, v evolves as a power law ðG�
GcÞ� with exponent � ¼ 0:80� 0:15, while for G<Gc,

these variations are described by an Arrhenius law v�
e�ðEa=kBTÞ with typical energy barriers Ea � ðG� h�iÞ��,
where � ’ 0:60. This behavior can be quantitatively ex-
plained by extending fracture mechanics to disordered
systems. In this description, the resistance to failure of a
material is interpreted as the critical force to depin the
crack front from the material heterogeneities. Below this
depinning transition, the line can also propagate, but at
much smaller velocities through thermal activated pro-
cesses, and the velocity variations are provided by a creep
law as observed experimentally. The experimental results
presented here and their theoretical interpretation open

new perspectives for the prediction of macroscopic quan-
tities of direct interest for engineering and applied science.
They make the link between the microstructural properties
of a brittle material and its fracture energy or the crack
velocity. This bridge might help to design stronger mate-
rials with increased lifetimes.
The author thanks G. C. Cordeiro and A. Bindal for their

help in the experiments and M. Alava, K. Bhattacharya,
D. Bonamy, E. Bouchaud, J.-B. Leblond, S. Morel,
A. Rosso, and R. Toledo for helpful discussions.
Financial support from the French Ministry of Foreign
Affairs through the Lavoisier Program is acknowledged.

*ponson@caltech.edu
[1] M. J. Alava, P. K. Nukala, and S. Zapperi, Adv. Phys. 55,

349 (2006).
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