
Gyrokinetic Simulations of Turbulent Transport in a Ring Dipole Plasma

Sumire Kobayashi and Barrett N. Rogers*

Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755, USA

William Dorland†

Department of Physics, University of Maryland, College Park, Maryland 20742, USA
(Received 19 March 2009; published 30 July 2009)

Gyrokinetic flux-tube simulations of turbulent transport due to small-scale entropy modes are presented

in a ring-dipole magnetic geometry relevant to the Columbia-MIT levitated dipole experiment (LDX)

[J. Kesner et al., Plasma Phys. J. 23, 742 (1997)]. Far from the current ring, the dipolar magnetic field

leads to strong parallel variations, while close to the ring the system becomes nearly uniform along

circular magnetic field lines. The transport in these two limits are found to be quantitatively similar given

an appropriate normalization based on the local out-board parameters. The transport increases strongly

with the density gradient, and for small � ¼ Ln=LT � 1, Ti � Te, and typical LDX parameters, can reach

large levels. Consistent with linear theory, temperature gradients are stabilizing, and for Ti � Te can

completely cut off the transport when � * 0:6.
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The Columbia-MIT levitated dipole fusion experiment
(LDX) [1] confines heated plasma using a dipolar magnetic
field generated by a magnetically-levitated current ring.
Motivated by this experiment, we present here five dimen-
sional gyrokinetic GS2 [2,3] flux-tube simulations of tur-
bulent transport due to small-scale (k?�i � 1) entropy
modes in an MHD-stable ring dipole system. The entropy
mode is a plasma analogue of the thermal instability in
ordinary fluids [4], modified by magnetic curvature and
finite Larmor radius (FLR) effects, and early observations
[5] have suggested it may indeed be active in LDX. It may
also drive turbulence and transport in astrophysical sys-
tems such as planetary magnetospheres, particularly in
higher-� regimes in which the possible stabilizing contri-
bution of boundary conditions at the ionosphere (e.g., due
to line-bending) may play a secondary role [6–8]. A cross
section of the ring-dipole geometry and some magnetic
field lines relevant to our study are shown in Fig. 1. The
outer field line is located near the bulk of a typical LDX
plasma and is characterized by a high mirror ratio
Bmax=Bmin � 37 and high trapped particle fractionffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Bmin=Bmax

p � 99%. The majority of the simulations
discussed here are based on the magnetic geometry of a
flux tube surrounding this outer field line and explore how
the turbulence and transport at this location depend on the
density and temperature gradients, the plasma collisional-
ity, and Te=Ti. To study how the transport depends on the
magnetic geometry, we also compare simulations of the
outer field line geometry in Fig. 1 to those described in our
earlier work [9], which apply to flux tubes very close to the
current ring. In the near-ring limit, the parallel variations
and trapped particles become negligible and the field lines
become circular, and therefore the system becomes equiva-
lent to a Z pinch geometry. This comparison reveals that
the normalized transport in the two limits are qualitatively

and quantitatively similar, provided that the normalization
in the dipole system is based on appropriate quantities at or
near the outer-midplane radius Rmid. This normalization is
preferred due to the B� 1=r3 dipolar behavior of the
magnetic field, which implies that the majority of the
plasma within a flux tube is located at radii that are
comparable to Rmid.
As a first step we consider the regime � � 1, in which

the dominant instabilities have an electrostatic character
and kk � k?. As in the Z pinch system and consistent with

expectations from linear theory [10], we find two main
instabilities: the ideal MHD interchange mode at stronger
gradients and small-scale non-MHD entropy modes at
weaker gradients. The local linear growth rate for the ideal
mode can be written as [10]:

�ideal

h!dii� �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
d� 10

3

hbii�

s
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where d � 2!�ið1þ�Þ
h!dii� ¼ �2 dlnp

dlnU � R=Lp is a measure of the

pressure gradient, bi � ðk2?Ti=Zimi�
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clTi
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dlnn0ðc Þ=dc ¼ Ln=LT ,

FIG. 1 (color online). Ring-dipole magnetic flux tubes.
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h� � �i� ¼ U�1 H½ð� � �Þd�=ðB � r�Þ�, Uðc Þ � H½d�=ðB �
r�Þ�, c is flux function, n0 is background density, Ln,
LT are background density and temperature gradient scale
lengths, and

H
d� is an integral along a flux tube. The

system is stable to ideal interchange modes when the
gradients are sufficiently weak: d < 10=3. Here we focus
on such ideally stable regimes, in which the dominant
instability is the entropy mode. For a Ti ¼ Te equilibrium
and k?�i � 1, the entropy growth rate is given by [10]:

�entropy

h!dii� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5ðd 7�3�

1þ� � 10Þ
9ð103 � dÞ

vuut
: (2)

This expression predicts the mode is unstable for 10=7<
d< 10=3 when � ¼ 0, while for finite �, stability for any
d < 10=3 is reached when �> 2=3. This cutoff with in-
creasing �, as we show later, is consistent the GS2 code,
although for small � the code predicts instability even
below d < 10=7. Figure 2 shows linear entropy mode
growth rates obtained numerically using GS2 for various
d values, Ti ¼ Te, � ¼ 0, and weak collisionality. The
plots in this article refer to a coordinate system (x, y, z)
in which the z direction is parallel to the magnetic field.

The x and y directions are both perpendicular to ~B and to
each other, with y representing the ignorable (toroidal)
coordinate around the symmetry axis of the device and
the x direction aligned parallel to the plasma gradients (i.e.,
radial at the outer midplane). As in the Z pinch limit [9],
Fig. 2 shows the entropy mode growth rates remain robust
up to remarkably high values of ky�i (here and elsewhere,

unless otherwise noted, �i is evaluated at the outer mid-
plane of the outer field line shown in Fig. 1). The quanti-
tative similarity of Fig. 2 to the Z pinch case, which
exhibits roughly comparable peak growth rates at k?�s �
1 [�s ¼ cs=�ci, c

2
s ¼ ðTi þ TeÞ=mi], depends strongly on

the normalization in the dipole case. Normalizing � and ky
to the inboard rather than outboard midplane parameters,
for example, increases the normalized growth rates by
about a factor of 10 and shifts the peak of the k spectrum
down to k?�s � 1=37� 0:03.

Turning to the nonlinear regime, the simulations include
128	 128 Fourier modes in the x and y directions span-
ning the range 0:27 
 k?�i 
 17, 32 grid points in the

parallel (z) direction, 24 ion and 24 electron energy grid
points in the velocity space region 0 
 v 
 6vthi, and 10
grid points in � ¼ vk=v. Simulations have been carried out

to verify the insensitivity of the transport values reported
here to variations in the spatial and velocity space resolu-
tions and box size. The mass ratio is mi=me ¼ 3672 (deu-
terium) and the collision frequency is defined as

�phys ¼ �n0e
4 ln�=ðT3=2

i m1=2
i Þ � �

ffiffiffi
2

p
vthi=Rmid.

Collisions in the code are modeled by a gyro-averaged
Lorenz collision operator [11] that conserves total energy
and particle number. We also conducted several simula-
tions with a more refined collision operator [12] that in-
cludes energy diffusion and conserves momentum and
confirmed that the transport dynamics are qualitatively
and quantitatively similar. The more refined operator, how-
ever, was not operational across the full range of parame-
ters explored here, and further code development is
required to complete the comparison. No numerical hyper-
viscosity was used.
Figure 3 shows the progression of the electrostatic po-

tential in a GS2 simulation at a moderate density gradient
(d ¼ 1:25,� ¼ 0) and either low collisionality [Figs. 3(a)–
3(c) � ¼ 0:0000015]or high collisionality [Fig. 3(d), � ¼
0:15]. Unless otherwise noted, the plots show	 at the outer
midplane perpendicular to the magnetic field with the
horizontal coordinate x directed radially outward and the
vertical coordinate y directed toroidally, around the sym-
metry axis. Plots of	 at other locations along the flux tube
such as the inner midplane look nearly identical. Following
initialization with low-amplitude random noise (not
shown), the fastest growing entropy modes, visible as the
horizontal streamers in Fig. 3(a), eventually dominate with
ky�s � 1 and kx ¼ 0. Exponential growth of the entropy

mode spectrum continues until nonlinear saturation, which
is triggered by the onset of the Kelvin-Helmholz instability
(KHI) with kx�i � 0:5 as shown in Fig. 3(b). These two
plots are representative of essentially all the parameter
regimes considered in this study. Following this, however,
the nonlinear development of the KHI leads to sheared
E	 B flows in the y direction, and the damping and
stability of these zonal flows depends on the parameters
� and d. At moderate to weak gradients (e.g., d & 1:34)
and low collisionality, the late-time zonal flows are un-
damped and robustly stable [see, e.g., Fig. 3(c) for � ¼
0:000015]. The corresponding particle and heat trans-

FIG. 2 (color online). � vs k? (normalized to vthi=Rmid and
1=�s, respectively) for � ¼ Ln=LT ¼ 0, � ¼ 0:000015 and
(bottom to top): d ¼ 1:25, 1.34, 1.49, 1.75, 1.89, 2.22.
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FIG. 3 (color online). Snapshots of 	 for d ¼ 1:25, � ¼ 0 at
the outboard midplane showing (a) linear phase, (b) onset of the
KHI, and (c) the late-time behavior for low collisionality, � ¼
0:0000015 or (d) high collisionality, � ¼ 0:15.
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port levels are very small, as can be seen from the red
(triangle) curves in Figs. 4(a)–4(c). (The fluxes are
normalized ð�s=RmidÞ2vthif with f ¼ n0 for the particle
flux and f ¼ n0T
 for the heat fluxes, and the plots are for
� ¼ 0. The ion and electron particle fluxes are equal to the
level of numerical accuracy of the code.) In contrast, at
moderate to weak gradients but high collisionality, the
zonal flows are damped by the collisions and plots of 	
look much more turbulent (see, e.g., Fig. 3(d) for � ¼
0:15). The transport levels are correspondingly higher at
large � [see, e.g., the green (open rectangle) curves in
Figs. 4(a)–4(d) for � ¼ 0:15], despite a reduction in this
limit of the linear growth rates at high k?. This behavior is
also consistent with Fig. 4(d), which shows the time-
averaged root-mean-square (RMS) shearing rates V 0 ¼
dvE;y=dx due to the six longest-wavelength zonal flow

modes in the system (our tests show that the smaller
wavelength zonal flows do not substantially impact the
transport). The range of linear growth rates � are also
shown in blue (light dots). Except at the steepest gradients
(highest d), the shearing rates are higher than the � values
at small � ¼ 0:000015 [red (triangle) curve] and are com-
parable to � at high � ¼ 0:15 [green (open rectangle)
curve].

These features persist as the density gradient / d is
increased up to about d� 1:9, at which point the quasi-
static zonal flows, like those shown in Fig. 3(c) for small �,
become unstable. In this steeper gradient regime the simu-
lations are turbulent and appear qualitatively and quantita-
tively similar regardless of the collisionality. As in the Z
pinch case, we believe this is due to the emergence of
(tertiary) Kelvin-Helmholz instabilities of the zonal flows,
which replace the collisional damping as the main regula-
tor of the zonal flow amplitudes as V 0

E in the simulations
increases with d. It is difficult to identify a precise Kelvin-
Helmholtz stability threshold due to the coupling of the

KHI to the (unstable) entropy mode at low frequencies. As
the velocity shear V0

E due to the zonal flow modes in the
simulations is artificially increased, for example, the linear
growth rates and nonlinear transport levels typically de-
crease at first, presumably due to the stabilizing impact of
V0
E on the entropy modes. At still higher values of V 0

E,
however, the trend reverses and the transport and growth
rates start to slowly increase, presumably due to the emer-
gence of the Kelvin-Helmholz instability. What is clear is
that at weak gradients the zonal flows in the nonlinear
simulations are immune to the KHI, while they become
strongly unstable if their amplitudes are sufficiently in-
creased. The orange (solid) curve in Fig. 4(d) shows the
latter V0

E limit at which robust Kelvin-Helmholz modes are
visible. This curve, which likely somewhat overestimates
the V0

E threshold, was obtained using the method illustrated
in Fig. 5. This figure shows the behavior of the zonal flow
modes at steep gradients (d ¼ 2:22) when they are in-
creased by a factor of 1.8 upon restart, with the other
modes in the simulation reset initially to small levels.
Figure 5(a) shows the 	 profile upon restart and Fig. 5(b)
shows the subsequent onset of the KHI, identifiable by its
wavelength in the y direction, which is comparable to scale
of the background zonal flows and is substantially longer
than those typical of entropy modes. The drop in the orange
(solid) curve in Fig. 4(d) as d is increased is possibly due to
the coupling of the KHI to the (stable) ideal interchange
mode [9], which becomes progressively weaker as the ideal
marginal stability boundary at d ¼ 10=3 is approached.
As can be seen from Fig. 6(a), in contrast to the desta-

bilizing effect of the density gradient, temperature gra-
dients (in the same direction as the density gradient) are
stabilizing for entropy mode turbulence. In the simulations
of Fig. 6(a) the density gradient was held fixed and � was
increased such that d ¼ 1:89ð1þ �Þ. Consistent with the
predictions of linear theory [13] the transport cuts off at
about �� 0:6. This cutoff may have important experimen-
tal consequences for LDX, given that the experiments
typically operate with finite �> 0, and given that the
predicted entropy mode transport for LDX parameters
can be quite large for � ¼ 0. For example, defining
�phys � nveff and considering deuterium plasma parame-

ters with Te � Ti � 100 eV, Rmid � 0:5 m Bmid � 0:2T /
1=R3

mid, the normalized GS2 particle flux �GS2 plotted

FIG. 4 (color online). (a) �part for � ¼ 0:000015 (red tri-
angles), 0.0015 (blue crosses), 0.15 (green open rectangles),
and a mixing length estimate (dashed black). (b),(c) The ion
and electron heat fluxes. (d) The corresponding RMS shearing
rates V0

E and �entropy (light blue dots) and an approximate KHI

threshold (orange solid).
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FIG. 5 (color online). The KHI when the zonal flows are
amplified by 1.8 times for d ¼ 2:22 (a) at restart and (b) after
t� 5Rmid=vthi.

PRL 103, 055003 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
31 JULY 2009

055003-3



in Fig. 4(a) yields veff � �GS2vthið�i;mid=RmidÞ2 �
�GS210�GS2ðTi=100 eVÞ3=2ðR=0:5 mÞ4 � 10�GS2 m=s,
where �GS2 � 1 and larger for � ¼ 0 and density gradients
that are about 30% below ideal marginal stability and
steeper (d * 2:2). Equivalently, D� �phys=n

0
0 � veffLn

where Ln � 0:3 m. These results suggest the operational
space of an LDX-like device may be limited by entropy
mode turbulence either to the regime � * 0:6 (which
seems potentially accessible since the entropy mode heat
fluxes are nominally smaller than the particle fluxes), or
else the density profile will remain stiffly clamped by the
transport to gradients moderately below (�1=2–2=3) the
ideal interchange stability limit.

Expectations based on linear theory, calculated either
with GS2 or Eq. (27) of Ref. [10], are also roughly con-
sistent with an observed increase in the transport levels
with increasing Te=Ti. Figure 7 shows this dependence at a
steep density gradient d ¼ 2:2 and � ¼ 0. Relative to the
Te ¼ Ti case, the particle transport is reduced by about
factor of 2 for Te=Ti ¼ 1=3, and increased by a factor of
�3:1 for Te=Ti ¼ 3.

Turning finally to the dependence of the turbulence and
transport on the geometry and location of the flux tube, we
note two key facts: First, the fluxes in the dipole system
typically exhibit strongly enhanced values at the outboard
midplane relative to the inboard midplane (a factor of
�60� 2Bmax=Bmin at the steepest gradients, and smaller
collisionality-dependent amounts at weaker gradients).
This asymmetry is due mainly to the 1=B dependence of

the (radial) ~E	 ~B velocity. The second fact is that the total
transport levels, when normalized to the outboard mid-
plane parameters, do not depend strongly on the location

of the flux tube: the normalized transport levels shown in
Fig. 4, for example, are comparable to, or at higher gra-
dients somewhat less than (e.g., by about a factor of 3),
those found previously in the Z pinch limit [9]—a limit
that, in our system, applies to flux tubes very close to the
current ring. The factor of 3 reduction might reflect our
relatively extreme choice of outboard-midplane normaliz-
ing parameters: choosing values that are radially about
�30% closer to the ring would boost the normalized
transport in the dipole system by about a factor of �3.
(In contrast, normalizing the transport to plasma parame-
ters at the inner midplane would yield a factor of �1400
increase.) With an outboard midplane normalization, the
mixing length argument for the transport described in the Z
pinch system [9] also roughly applies here, at least in the
higher � simulations in which the zonal flows are not a
dominating factor. Normalizing 	 to Ti�i=ðeRmidÞ, � to
vthi=Rmid, k? to 1=�i, and n to n0�i=Rmid, we estimate	�
�=k2?, and from the continuity equation, n�	, so that

�part � k?hn	i � �2=k3?. Choosing k?�i � 0:4, a value

that typically contributes strongly to the transport, this
estimate is shown as the black dashed curve in Fig. 4(a).
A similar estimate applies to the heat flux, which displays a
comparable parametric trend.
In conclusion, small-scale entropy mode turbulence

driven by the entropy mode in a ring-dipole system exhibits
a large variation of the turbulent transport as a function of
the density gradient (which is destabilizing) and tempera-
ture gradient (stabilizing). Normalizing the transport to
local plasma parameters at the outer midplane, robust
transport is observed when T0

0 ¼ 0 and n00 is within about

a factor of 1=2 to 2=3 of the ideal MHD interchange
stability limit. Consistent with linear theory predictions,
the transport cuts off when �� 0:6 or larger and, when the
density gradient is steep, tends to increase with Te=Ti.
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FIG. 7 (color online). (a) Particles flux (ion and electrons
same) and (b) ion (red triangles) and electron (blue crosses)
heat flux versus Te=Ti for � ¼ 0 and � ¼ 0:000015.

FIG. 6 (color online). (a) Particles flux (ion and electrons
same) and (b) ion (red triangles) and electron (blue diamonds)
heat flux versus � for � ¼ 0:000015.
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