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The self-consistent spatiotemporal evolution of a drift-wave (DW) radial envelope and a zonal-flow

(ZF) amplitude is investigated in a slab model. The stationary solution of the coupled partial differential

equations in a simple limit yields the formation of DW-ZF soliton structures, which propagate radially

with speed depending on the envelope peak amplitude. Additional interesting physics, e.g., the generation,

destruction, collision, and reflection of solitons, as well as turbulence bursting can also be observed due to

the effects of linear growth or damping, dissipation, equilibrium nonuniformities and soliton dynamics.

The propagation of soliton causes significant radial spreading of DW turbulence and therefore can affect

transport scaling with the system size by broadening of the turbulent region. The correspondence of the

present analysis with the description of DW-ZF interactions in toroidal geometry is also discussed.
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Explaining the size scaling of confinement properties in
magnetized plasmas is one of the crucial and challenging
problems of fusion energy research. It has been pointed out
that turbulence spreading is responsible for local turbu-
lence intensity dependence on global equilibrium proper-
ties [1], i.e., the system size, and, thus, for the size scaling
of turbulent transport coefficients. Therefore, the nonlocal
character of turbulent intensity plays a crucial role in the
breakdown of gyro-Bohm scaling of turbulent transport
and transition to Bohm scaling, as observed in several
numerical simulations [2–4].

The radial propagation of drift-wave (DW) turbulence in
tokamak plasmas was first investigated by Garbet [5], in
the absence of zonal flow (ZF). Turbulence spreading was
investigated also in Refs. [6,7]. Later on, using a single
model equation for the local turbulence intensity, Hahm
et al. [8] considered the ‘‘minimal problem’’ for turbulence
spreading, which is about spatiotemporal diffusive propa-
gation of a patch of turbulence as a fluctuation front from
an unstable to a stable or a weaker drive region. A mean
field theory of turbulent transport has been developed and
extensively studied. By performing a Fokker-Planck analy-
sis on the evolution of turbulence energy density, or apply-
ing quasilinear theory to the wave kinetic equation, one can
derive a simple equation for the mean turbulence energy
density. This approach leads to a reaction diffusion equa-
tion similar to the well-known Fisher equation [9,10].
Gürcan et al. [11] obtained an exact solution for this
model, which describes a ballistic front propagation with
speed given by the geometric mean of diffusion coefficient
and linear growth. In this work it was pointed out that
ballistic spreading is possible even without toroidal cou-
pling effects. A more systematic approach [12] was pro-
posed to explain turbulence spreading in terms of nonlinear
mode couplings using a two-field Hasegawa-Wakatani

model (kinetic and internal energy) recovering the previous
one-field model [11] in the proper limit, where the fluxes
due to nonlinear interaction are written in the Fick’s law
form. Analyses of turbulence spreading based on solutions
of a bi-variate Burgers equation [13] for the evolution of
the DW plasmon density were reported in Ref. [14]. Garbet
et al. [15] also developed a two-field critical gradient
model that couples a heat equation to an evolution equation
for the turbulence intensity. It is shown that this model
exhibits the dual character of turbulent dynamics, diffusive
or ballistic, depending on parameters such as the heat flux
and the wave number.
In spite of great effort, the fundamental dynamics of

turbulence spreading is still not well understood. Although
turbulence is truly a microscopic phenomenon, spreading
or propagation of turbulence is usually related to meso-
scale dynamics, e.g., intermittency, formation of ava-
lanches, transport barriers and other coherent structures,
which cannot be described by linear excitation and non-
linear wave-wave couplings via triad interaction processes
only. ZFs are frequently assumed to be less or not impor-
tant at all in the spreading process [8–10], based on the
argument that large scale radially extended eddies are most
effective at spreading turbulence, while ZFs inhibit spread-
ing by destroying these structures [16,17]. However,
slower DW turbulence spreading, observed in global gyro-
kinetic simulations when ZFs are included, has been at-
tributed to the suppression of DW intensity by the ZFs
[18,19] and not to their dynamic role.
In the present work, we study the nonlinear DW-ZF

interplay in a simple slab geometry in order to elucidate
the underlying physics mechanisms responsible for turbu-
lence spreading. A general two-field DW-ZF model is
derived for the spatiotemporal evolution of the DW radial
envelope and ZF amplitude, which reduces to previous
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descriptions [2,20,21] when ZF induced modulations on a
given DW pump are considered with its sidebands (4-
wave). Since the total energy cascades into shorter radial
wavelengths via the coherent nonlinear DW-ZF modula-
tion interaction, the local DW envelope nonlinearly
steepens and the DW linear dispersion becomes stronger.
Time scales for nonlinear interaction and linear dispersion
eventually become comparable, showing analogies to the
Langmuir soliton problem. Coherent structures are, thus,
expected to form, such as DW-ZF solitons which will
propagate radially. Turbulence spreading may then occur
via DW-ZF soliton propagation with x� t, which is faster
than any diffusive process.

The coherent 4-wave DW-ZF modulational interaction
model for toroidal plasmas [21] has been derived based on
the first-principles nonlinear gyrokinetic equation [22]. In
this work, the same theoretical approach is applied in a
simplified slab geometry [23], where x, y, z coordinates
correspond to, respectively, the toroidal coordinates r, �,
and � . In particular, the radial wave number kx may be
understood as the wave number of the DW radial envelope,
kr � n�kdq=dr [2,20,21]. In this respect, the results ob-
tained in the present simplified slab model [24] can be
expected to hold, at least qualitatively, in toroidal plasmas.

We start from the slab analysis of the electrostatic
DW-ZF interaction model proposed in [23]. Similar to
the Hasegawa-Mima model, using two-fluid description
and quasineutrality condition, one can straightforwardly
derive the DW evolution equation in the form [23]:

ð1� �2
sr2Þ@t�d � ðc2s=�iÞr�d � ẑ � r lnn0

� ðc2s=�iÞr�z � ẑ � r�d þ ðc2s�2
s=�iÞr

� ½r�z � ẑ � rr�d þr�d � ẑ � rr�z� ¼ 0; (1)

where cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Te=mi

p
, �s ¼ cs=�i is the ion Larmor radius

at the sound speed and the scalar potential is normalized to
Te=e; the ZF potential �z ¼ h�i, where h� � �i represents
flux surface averaging [(y, z) plane]. The last two terms on
the right-hand side correspond to higher order Reynolds
stress corrections due to nonlinear polarization drift,
Oðk4�4

sÞ, which can be ignored when jk�sj � 1. Mean-
while, ZF has k� ¼ kk ¼ 0; thus, electrons do not behave

adiabatically in the ZF potential. We can describe ZFs by
the condition of no net radial flux:

@tr2�z � ðc2s=�iÞhr � ½r�d � ẑ � rr�d�i ¼ 0: (2)

As in Refs. [2,20,23], we consider a coherent drift wave
with single toroidal number n, or constant ky in slab

geometry. Thus, the 2-field coupled set of DW-ZF evolu-
tion equations are readily cast in the form

ð1þ k2y � @2xÞ@t�d þ i
!�ðxÞ
!�ð0Þ�d ¼ �iC�d@x�z; (3)

@t�z ¼ iCh�d@x�
�
d � c:c:i; (4)

where !� ¼ �kycs=Ln is the diamagnetic drift frequency

and Ln ¼ ðd lnx=dxÞ�1 measures the nonuniformity scale;
C ¼ ky�i=!�ð0Þ is a constant, while space and time have

been normalized to �s and !�1� ð0Þ, respectively. Note the
structural similarity of Eqs. (3) and (4) with Eq. (4) of [2] in
toroidal geometry where the most general form of the
leading order radial envelope wave-packet propagation is
given by Eq. (5) of [2]. Numerical simulations of the above
coupled system show that DW-ZF can form solitary struc-
tures, which coherently propagate with characteristic speed
(Fig. 1). These coherent structures are envelope solitons
with wavelength of the carrier wave comparable to the
envelope width, suggesting that turbulence spreading can
be caused by soliton formation due to balance between DW
dispersion and trapping by nonlinearly generated ZFs.
For the sake of simplicity, we initially ignore linear

growth or damping and dissipation of both DW and ZF.
For now, we also take!� constant. The!�ðxÞ profile intro-
duces extra effects of finite system size, which will be
discussed elsewhere. Furthermore, we assume a coherent
DW form �dðx; tÞ ¼ Adudðx; tÞ expðikxx� i!tÞ, in which
Ad is the maximum perturbation amplitude, usually 	
10�4 � 10�2, the normalized envelope function udðx; tÞ
is chosen to be real and long-scale j@2xudj � k2yjudj, the
phase ’ ¼ kxx�!t describes fast oscillations in time but
not necessarily in space, kx is the radial wave number and
! is the DW frequency. Substituting the DW form given
above into Eqs. (3) and (4), the coupled partial differential
equations (PDEs) can be rewritten in the following non-
linear Schrödinger equation form

ð1þ k2?Þð@t þ v@xÞud þ ði!� @tÞ@2xud
� i!�ud ¼ �iC@x�zud; (5)

@t�z ¼ 2CkxA
2
du

2
d; (6)

where v ¼ �2kx!=ð1þ k2?Þ, � ¼ ð1þ k2?Þ � 1=!, and

k2? ¼ k2x þ k2y. For constructing a stationary solution, we

FIG. 1 (color online). Collision between two different DW-ZF
solitons, where Ad1 ¼ 0:002, kx�s ¼ 0:3 and Ad2 ¼ 0:0003,
kx�s ¼ 0:3.
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introduce � ¼ ðx� vtÞ� and take udðx; tÞ ¼ udð�Þ and
�zðx; tÞ ¼ �zð�Þ, such that @t ¼ �v�@� and @x ¼ �@�.
Here, the small parameter � corresponds to the slowly
varying envelope scale. Finally, substituting �z from
Eq. (6) into Eq. (5), we derive one single ordinary differ-
ential equation (ODE) for the DW perturbation:

�2u00d � �ud þ ðC2=!2Þð1þ k2?ÞA2
du

3
d ¼ 0; (7)

where terms / @t þ v@x cancel by construction and @
2
x@tud

is ignored assuming that the envelope transient time is
much longer than the DW oscillation period, e.g. v� �
!, which can be justified a posteriori. The above second
order ODE clearly indicates the competition between lin-
ear dispersion and nonlinear self-trapping process. When
the DW amplitude Ad increases, its envelope becomes
nonlinearly steeper, i.e. � increases; meanwhile, the DW
dispersion also becomes stronger and tends to inhibit the
focusing process. Formally, this corresponds to equating
the three coefficients of u00d, ud and u3d, i.e.,

�2 ¼ 1þ k2? � 1=! ¼ C2=ð2!2Þð1þ k2?ÞA2
d: (8)

The DW wave-packet frequency! is then readily obtained

from the above quadratic equation, i.e., ! ¼ ½1þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ð1þ k2?Þ2C2A2

d

q
�=½2ð1þ k2?Þ�. Note that the right-

hand side contains the nonlinear frequency shift due to
finite DW turbulence amplitude. Similarly, the parameter �
can also be determined as

� ¼ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ k2?Þ=2

q
CðAd=!Þ: (9)

This derivation is subject to our a priori assumption � �
!v�1, which guarantees that the DW oscillation ! occurs
on the fastest time scale. Substituting �, !, v as functions
of kx and Ad, this assumption is equivalent to kxCAd �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ k2?Þ=2

q
!ðkx; AdÞ. Finally, given Eq. (8), Eq. (7) be-

comes a dimensionless ODE governing the stationary en-
velope function ud,

u00d � ud þ 2u3d ¼ 0: (10)

This ODE is analogous to that of an oscillator in
the so called ‘‘Sagdeev potential’’ �ðudÞ ¼ ð�u2d þ
u4dÞ=2, whose solution can be written as hyperbolic secant

function udð�Þ ¼ sechð�Þ, when appropriate boundary
conditions are imposed, viz. ud ! 0 at j�j ! 1.
Meanwhile, the ZF solution is obtained straightforwardly
by integrating Eq. (6) once, such that �zð�Þ ¼R
2kxC=ðv�ÞA2

dSech
2ð�Þd� ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 þ k2?Þ

q
Ad tanhð�Þ

which satisfies the causality constraint, i.e., @��z ! 0
when j�j ! 1 for any initially localized DW turbulence.
Expressions for DW and ZF in the laboratory frame are

�dðx; tÞ ¼ AdSech

�
�

�
xþ 2kx!

1þ k2?
t

��
eikxx�i!t; (11)

�zðx; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ k2?Þ

q
Ad tanh

�
�

�
xþ 2kx!

1þ k2?
t

��
: (12)

From Eqs. (11) and (12), it generally follows that ZF
potentials have radially moving structures of hyperbolic
tangent shape; meanwhile, Ez ¼ �@�z=@x manifests itself
as scalar-potential wells in the background plasma and trap
the corresponding DW packets. The radial scale of the
soliton is �2

s=ðLnAdÞ according to Eq. (9). Figure 1 shows
the spatiotemporal evolution of two counter-propagating
DW-ZF solitons, which are solutions of the original
coupled PDEs, given ky ¼ 0:3, �i=! ¼ 100. For consis-

tency with our analytic approach, we have chosen initial kx
and Ad to satisfy the a priori assumption � � !v�1.
Furthermore, we assumed no !� equilibrium variation
and no growth or damping and dissipation. Note that the
two envelope solitons remain unchanged in both real and k
space after the collision, although the dynamics during the
collision can be quite complicated. This is one of the
soliton’s essential features.
The radial propagation velocity of DW-ZF solitary

structures, v, depends on both the radial wave number
and the DW amplitude. It is different from the group
velocity, vg ¼ @!l=@kx, which is determined by kx
through the linear dispersion relation only. Therefore, the
solution of Eqs. (11) and (12) gives a two-parameter, kx
and Ad, family of solitons. Figure 2 shows the relation
between v and kx for small initial amplitude Ad ¼ 0:003.
Numerical and analytical results agree well when kx & 0:4.
The discrepancy when kx > 0:4 originates from the break-
ing of the a priori assumption that @2x@t�d can be ignored
in Eq. (5). Moreover, when Ad increases to about 10

�2, the
analytical result is no longer valid either, since the ignored
term Oðv�3Þ modifies the solution at larger kx or Ad,
according to Eq. (9).
Our numerical simulation results for Ad * 0:01 show

that the dominant asymptotic (t ! 1) DW turbulence
behavior is still of soliton type and the propagation velocity
v increases with the DWamplitude Ad. We observe that the
DW radial wave number no longer corresponds to its initial
value but rather to �, which is mainly determined by the

FIG. 2 (color online). The relation between v and kx for Ad ¼
0:003.
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amplitude Ad alone. There seems to be a transition from a
two-parameter to a one-parameter family of soliton solu-
tions of the coupled system. If the amplitude becomes even
larger, e.g. Ad � 0:02, the initially localized DW-ZF soli-
ton breaks into many pieces in the form of solitons and
wave trains; similar to Gardner’s work [25] on the
Korteweg–deVries equation, in which it is shown that a
localized but otherwise arbitrary initial perturbation will
generate a conventional wave train, quickly destroyed by
dispersion, and a finite number of solitons, which charac-
terize the asymptotic solution.

We studied the DW-ZF initial value problem in more
general cases as well, i.e., in the presence of linear growth
or damping, dissipations, and variation of equilibrium
profiles. Figure 3 shows the evolution of DW turbulence
out of initial random noise, with strong DW growth rate
�dð0Þ ¼ 0:1, uniform ZF damping rate �z ¼ 0:075 and
Lp ¼ 150�s, which represents the system size.

Dissipations are also included. The drift frequency !�ðxÞ
has Gaussian shape centered at x ¼ 0; DW turbulence
is linearly unstable in the central region (jxj< 80�s)
but is damped in the outer region (jxj> 80�s), i.e.
0:15 expð�x2=ð75�sÞ2Þ� 0:05, while the ZF is uniformly
damped. Figure 3 clearly shows formation and propagation
of solitons, which however exhibit more complicated dy-
namic behaviors, for instance, growing amplitudes, slow-
ing down of propagation speed, soliton breaking,
turbulence bursting and more. Since coupled PDEs gener-
ally describe infinite-dimensional dynamical systems, DW
turbulence dynamics appears mostly chaotic in the corre-
sponding parameter space, (�d, �z). Solitons may bounce
back at their turning points, possibly enhancing nonlinear
interactions inside the turbulent region and impacting the
size scaling of turbulence transport. Figure 3 also demon-
strates that the nonlinearly saturated turbulence has spread
into a much broader region than that of its linear mode

structure sampling global equilibrium properties and,
again, reflecting finite system size.
In summary, we have demonstrated the novel result that

coherent structures such as radial envelope solitons can be
constructed self-consistently in a two-field DW-ZF model
and cause significant radial turbulence spreading in a slab
plasma. Horton and Meiss [26] considered poloidal DW
solitons in the absence of ZF and dispersion due to polar-
ization drift. Despite the difference in the underlying phys-
ics, the inverse scattering method and statistical approach
they adopted could also be applied here to resolve the
radial DW-ZF dynamics.We have also shown the structural
analogy of the underlying coupled PDEs for the nonlinear
evolution of the DW radial envelope and ZF amplitude
with the corresponding equations derived in toroidal ge-
ometry [2,20], demonstrating the generality of the present
results and the possibility of readily extending them in
future works. The size scaling of DW turbulence will
also be discussed in detail in a separate work.
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