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A method to generate new classes of random matrix ensembles is proposed. Random matrices from

these ensembles are Lax matrices of classically integrable systems with a certain distribution of momenta

and coordinates. The existence of an integrable structure permits us to calculate the joint distribution of

eigenvalues for these matrices analytically. Spectral statistics of these ensembles are quite unusual and in

many cases give rigorously new examples of intermediate statistics.
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Introduction.—Statistical properties of surprisingly
many different problems can be described by two main
distributions: the Poisson statistics of independent random
variables and the Random Matrix Theory (RMT) statistics.
Classically integrable systems display spectral statistics
which are close to Poisson distribution [1], but classically
chaotic systems, in general, are well described by RMT [2].
The same classes of spectral statistics appear in the inves-
tigation of disordered systems, in particular, in the study of
the 3-dimensional Anderson model (see, e.g., [3] and
references therein). Though the universal character of the
Poisson and RMT statistics is well established (but not
always well understood), these two distributions do not
exhaust all possible behaviors, even in the 3D Anderson
model. A new phenomenon appears in this model when the
disorder strength is set at a special value corresponding to
the metal-insulator transition. In [4], it was established
numerically that in this case, spectral statistics has features
intermediate between Poisson and RMT behaviors. Similar
hybrid statistics have been observed numerically [5] for
certain dynamical systems which are neither integrable nor
chaotic but belong to the class of pseudointegrable systems
[6]. These and other examples demonstrate the possible
existence of a not yet well-defined class of intermediate
spectral statistics [3] with two characteristic features: level
repulsion at small spacings as in RMT and exponential
decrease of the nearest-neighbor distribution at large spac-
ings as in the Poisson distribution.

The usual randommatrix ensembles are chosen in such a
way that their measure is invariant under conjugation
M ! UMU�1 over a group of either unitary, orthogonal,
or symplectic matrices [7]. The invariance of eigenvalues
of M under these groups permits to find the exact joint
distribution of all eigenvalues �j. In the simplest setting

[7], the distribution reads

Pð�Þ � exp

�
�a

X
k

�2
k þ �

X
j<k

lnj�j � �kj
�

(1)

where � ¼ 1, 2, 4 for, respectively, orthogonal, unitary,
and symplectic ensembles.
For intermediate statistics, the situation is different.

Physical problems giving rise to intermediate statistics
have a natural basis in which they are defined, and in
general do not possess explicit invariant measure, which
makes the progress of their analytical treatment difficult.
In this Letter, we introduce new families of random

matrix ensembles which are not invariant over geometrical
transformations, but still allow us to obtain an exact joint
distribution of eigenvalues analogous to (1). These en-
sembles give new nontrivial examples of intermediate
statistics.
General construction.—To define our random matrix

ensembles, we consider a classical one-dimensional
N-body integrable model such that the equations of motion
are equivalent to the matrix equation

_L ¼ ML� LM (2)

for a pair of Lax matrices L andM depending on momenta
p and coordinates q [8].
It is the Lax matrix L ¼ Lðp;qÞ that we propose to

consider as a random matrix depending on random varia-
bles p and q distributed according to a certain ‘‘natural’’
measure

dL ¼ Pðp;qÞdpdq (3)

which depends on the system. The only information we
shall use from the integrability of the underlying classical
system is the existence and explicit form of action-angle
variables I�ðp;qÞ and ��ðp;qÞ, and the identityY

j

dpjdqj ¼
Y
�

dI�d�� (4)

due to the canonicity of the action-angle transformation.
Direct proof of this key identity is difficult, and implicit
methods were used to establish it [9,10]. Action variables
turn out to be usually the eigenvalues �� of the Lax matrix
or a simple function of them. The canonical change of
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variables in (3) from momenta and coordinates to action-
angle variables leads to a formal relation

dL ¼ P ð�; �Þd�d�: (5)

The exact joint distribution of eigenvalues is then obtained
by integration over angle variables, which can easily be
performed in all cases considered:

Pð�Þ ¼
Z

P ð�; �Þd�: (6)

This scheme is general and can be adapted to several
different models. Because of space restrictions, we con-
sider here only two representative ensembles, based on
the rational Calogero-Moser (CM) [11] and the trigono-
metric Ruijsenaars-Schneider (RS) [12] models. Other
examples and details of the calculations will be presented
elsewhere [13].

Calogero-Moser ensemble.—The Hamiltonian of the
rational CM model reads

Hðp;qÞ ¼ 1

2

X
k

p2
k þ g2

X
i<j

1

ðqj � qiÞ2
(7)

with the following N � N Hermitian Lax matrix [14]

Ljk ¼ pj�jk þ ig
1� �jk

qj � qk
: (8)

Let �� and ukð�Þ be eigenvalues and right eigenvectors of
L. In [9], it is proved that the matrixQ (called conjugate to
L), defined by

Q�� ¼ X
k

u�kð�Þqkukð�Þ; (9)

can be written as

Q�� ¼ ����� � ig
1� ���

�� � ��

; (10)

where the new variables �� ¼ Q�� are angle variables
canonically conjugated to the action variables ��.
Equation (10) is similar to (8) with the substitution g !
�g, qj ! eigenvalues �� and pj ! angle variables ��.

Consider now an ensemble of random matrices (8) de-
fined by random variables pi and qj with measure

dL� exp

�
�aTrL2 � b

X
k

q2k

�
dpdq (11)

where a and b are positive constants. Using the described
canonical change of variables and taking into account thatP

kq
2
k ¼ TrQ2 withQ given by (9), the measure in (11) can

be rewritten as

dL� exp½�aTrL2 � bTrQ2�d�d�

¼ exp

�
�a

X
�

�2
� � b

X
�

�2
� � X

���

bg2

ð�� � ��Þ2
�
d�d�:

(12)

Integration over� gives a constant, and we are left with the

following exact joint distribution of eigenvalues of the Lax
matrix L with measure (11)

Pð�Þ � exp

�
�a

X
�

�2
� � bg2

X
���

1

ð�� � ��Þ2
�
: (13)

According to this formula, eigenvalues of the above CM
ensemble behave as a 1D gas of particles with inverse
square interparticle potential. No long-range interaction
proportional to lnj�i � �jj is present, in contrast with

standard random matrix ensembles (1). We stress that our
model is different from the Moshe-Neuberger-Shapiro
model [15], which can be related to the Calogero-
Sutherland model (see [16]).
The fast decrease of interparticle potential in (13) with

the distance between particles permits to approximate (see,
e.g., [5]) the nearest-neighbor distribution of eigenvalues
of the Lax matrix (8) by the formula

PðsÞ � Ae�B2=s2�Cs (14)

where B is a fitting constant, and constants A and C are
determined from the normalization conditions. This ex-
pression is not exact but may be considered as an analog
of the Wigner surmise in RMT [7].
The measure (11) for coordinates q corresponds to N

particles with repulsion confined in an interval of the order

of 1=
ffiffiffi
b

p
. In order to simplify numerical investigation, it is

therefore natural to use the ’’picket fence’’ approximation
qk � k with integer k. We thus replace the matrix L by a
simpler matrix

~L jk ¼ pk�jk þ ig
1� �jk

2ðj� kÞ : (15)
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FIG. 1 (color online). Nearest-neighbor distribution for the
CM random matrices (15) with g ¼ 0:1, 0.5, 1, and 2 (from
left to right), averaged over 5000 realizations of matrices of size
N ¼ 301. Black solid lines are numerical results; red/gray
dashed lines indicate the fit (14) with fitted values of B. For
the considered values of g, B ¼ 0:096, 0.618, 1.46, and 3.11,
respectively. Inset: Difference between numerical result and fit
for g ¼ 0:1 (black), 0.5 (red/gray), 1 (green/light gray), and 2
(blue/dark gray).
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The decrease as jj� kj�1 of nondiagonal elements in ~L is
a characteristic feature of intermediate systems [3]. In
numerical calculations, we chose N variables pk as i.i.d.
random variables with uniform distribution between �1
and 1. In Fig. 1, we show the nearest-neighbor spacing
distribution for the matrix ~L for several values of the
parameter g. The simple surmise (14) is practically indis-
tinguishable from numerical results (see inset), which con-
firms the existence of unusual exponentially strong level
repulsion in this model. We have checked that other dis-
tributions of the qk lead to the same answer. The detailed
comparison will be performed elsewhere [13].

Ruijsenaars-Schneider ensemble.—The second example
we consider here is the trigonometric RS model [12]. It
appears that the random matrix ensemble that was pro-
posed in [17] as a quantization of a pseudointegrable
interval-exchange map and investigated in [18,19] is a
particular case of this model.

The RS model is determined by the Hamiltonian

Hðp;qÞ ¼ XN
j¼1

cosðpjÞV1=2
j ð�;qÞ (16)

where Vjð�;qÞ depends on q and a real parameter � as

Vjð�;qÞ ¼
Y
k�j

�
1� sin2�

sin2½ðqj � qkÞ=2�
�
: (17)

The Lax matrix Lðp;qÞ for this model is a unitary matrix
given by

Ljkðp;qÞ ¼ ei�ðN�1ÞþipjCjkðqÞeiðqk�qjÞ=2 (18)

[we choose a phase factor different from the one in [10] in
order to get Eq. (29) when qk ¼ 2�k=N]. Here, CðqÞ is the
orthogonal matrix

CjkðqÞ ¼ W1=2
j ð�;qÞ sin�

sin½ðqj � qkÞ=2þ ��W
1=2
k ð��;qÞ

(19)

with Wjð�;qÞWjð��;qÞ ¼ Vjð�;qÞ and

Wjð�;qÞ ¼
Y
k�j

sin½ðqj � qkÞ=2þ ��
sin½ðqj � qkÞ=2� : (20)

Action-angle variables are obtained similarly as for the CM
model. Here, one considers [10] the conjugate matrix Q
defined by

Q�� ¼ X
k

u�kð�Þeiqkukð�Þ (21)

where ukð�Þ are eigenvectors of the Lax matrix (18) cor-
responding to eigenvalues �� ¼ ei�� . In [10], it is shown
thatQ�� can be written in the form (18) with the following

substitutions: � ! ��, qm ! action variables �� and
pk ! angle variables �� canonically conjugated to ��.

The important difference of this model from, e.g., the
above CM model is that the Hamiltonian (16) and the Lax

matrix (18) are defined not on the whole q space but only
on a subset of it where all Vjða;qÞ in (17) are positive

(notice the square roots in these expressions). These re-
strictions depend only on coordinates and on � (in [10],
only the case 0< �<�=N had been considered). Let
Rð�;qÞ be the characteristic function of this subset

Rð�;qÞ ¼
�
1 when Vjð�;qÞ> 0; j ¼ 1; . . . ; N
0 otherwise

: (22)

We choose as a ‘‘natural’’ measure for the RS ensemble the
uniformmeasure of random variables p and q on the region
allowed by the above restrictions. This implies that the
measure on the RS ensemble is chosen as

dL� Rð�;qÞdpdq: (23)

We transform this expression to action-angle variables, and
perform the integration over angle variables. SinceQ and L
have the same form but with � and q interchanged, � is
subject to the same restrictions as q. We conclude that the
exact joint probability of eigenvalues of the ensemble of
random RS matrices (18) is

Pð�Þ � Rð�;�Þ: (24)

As mentioned, (18) is a generalization of the model inves-
tigated in [18,19]. The simplest nontrivial new case cor-
responds to the choice � ¼ �b=N with fixed b. To find
Rð�;�Þ in this case, we notice that as in [18,19], the ma-
trix (18) permits two rank-one deformations with known

eigenvectors and eigenvalues Nð�Þ
jk ¼ Ljke

�iðqj�qkþ2�Þ.
Generalizing the discussion in [18,19], one can prove
[13] that for N large enough, there exist exactly n ¼ ½b�
other eigenvalues at angular distance 2�b=N from any
eigenvalue �� (here [b] denotes the integer part of b).
Consider an ordered sequence of eigenphases on the unit

circle, �1 < �2 < . . .< �N , and denote the nearest differ-
ences by 	k ¼ �kþ1 � �k. Introducing two functions

fðxÞ ¼
�
1 when 0< x< b
0 otherwise

; gðxÞ ¼ 1� fðxÞ;
(25)

one can show [13] that these restrictions give rise to the
following expression for the joint probability (24) of RS
Lax matrix eigenphases inside an interval of length �

Pð�Þ �YN
j¼1

fðsjÞgðsj þ 	jþnÞ�
�
�� XN

k¼1

	k

�
; (26)

where sj ¼ 	j þ . . .þ 	jþn�1 and n ¼ ½b�. This formula

means that eigenvalues of RS random matrices (18) with
� ¼ �b=N behave exactly as a 1D gas where each particle
interacts with n ¼ ½b� nearest neighbors. In is known that
in this case, all correlation functions in the limit of large N
can be calculated by the transfer operator method (see, e.g.,
[5]). Here, we present a few results for the kth nearest-
neighbor distributions, Pðk; sÞ which determine the proba-
bility that in the interval of length s, there exist exactly
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k� 1 other eigenvalues [Pð1; sÞ � PðsÞ]. The details will
be discussed elsewhere [13].

When 0< b< 1, Pðk; sÞ ¼ 0 for 0< s < kb and for
s > kb Pðk; sÞ is a shifted Poisson distribution

Pðk; sÞ ¼ e�ðs�kbÞ=ð1�bÞ

ðk� 1Þ!ð1� bÞk ðs� kbÞk�1: (27)

For larger b, formulas, though explicit, become tedious.
For example, for b ¼ 4=3, Pð1; sÞ is nonzero only when
0< s < 4=3 and Pð2; sÞ when 4=3< s < 8=3. Inside these
intervals

PðsÞ ¼ 81

64
s2; Pð2; sÞ ¼

�
�3

2
þ 27

16
s� 81

512
s3
�
e3s=4�1:

(28)

To simplify numerical calculations, we use [as in (15)] the
picket fence approximation of coordinates qk ¼ 2�k=N.
At these values of q, Wjð�;qÞ ¼ sinN�=ðN sin�Þ and the

Lax matrix takes the form

~L jk ¼ eipk
1� e2i�N

Nð1� e2�iðj�kÞ=Nþ2i�Þ (29)

with random phases pk uniformly distributed in ½0; 2��.
When � ¼ �� with fixed �, this matrix up to notations

coincides with the one proposed in [17] and investigated in
[18,19]. We put � ¼ �b=N and perform numerical calcu-
lations of spectral statistics of matrix (29) for different
values of b and find that above formulas very well agree
with numerics. As an illustration, we present at Fig. 2 a
case with b ¼ 9=4 for which explicit formulas are too long
to be presented here. Even in this more complicated case,
analytical results are difficult to distinguish from numerics.

Conclusion.—To summarize, we proposed a general
method of constructing noninvariant random matrix en-
sembles whose joint distribution of eigenvalues can be
calculated analytically. These ensembles are Lax matrices
of classically integrable N-body models, equipped with a
suitably chosen measure of momenta and coordinates
which depends on the model. For such matrix ensembles,
the symmetry groups of usual RMT are replaced by the
underlying structure of integrable flows generated by N
conserved quantities. It is this structure which makes pos-
sible the explicit construction of joint probability of eigen-
values in these ensembles. Spectral statistics of these
ensembles are quite unusual, and in many cases they
present new examples of nonuniversal intermediate statis-
tics. In all considered cases, eigenfunctions computed
numerically present multifractal properties [13], which is
a typical feature of intermediate statistics [3]. It is interest-
ing to note that a specific random matrix ensemble, which
appeared in [17] as the result of quantization of an interval-
exchange map, belongs to this class.
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FIG. 2 (color online). Nearest-neighbor distributions (from left
to right) Pð1; sÞ (black), Pð2; sÞ (red/gray), and Pð3; sÞ (blue/dark
gray) for RS random matrices (29) with � ¼ �b=N and b ¼
9=4. All curves correspond to N ¼ 701 averaged over 1000
realizations of random phases pk. Solid lines are theoretical
predictions. Dashed vertical line indicates abscissa 9=4.
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